面对化石燃料日益枯竭、锂资源短缺等问题,钠离子电池以资源丰富、理论成本低、快充性能好、低温性能优异等优势被认为是发展新能源、大规模储能和低速电动交通工具中具有较大潜力的二次电池。钠离子电池正极材料是影响电池能量密度、循环性能、倍率性能等参数的重要因素之一,钠离子电池正极材料包括过渡金属氧化物、聚阴离子类化合物、普鲁士蓝类化合物和有机类化合物。总结并介绍了钠离子正极材料,概括了钠离子电池的优劣势,分析了各类正极材料的自身特性和研究方向,对钠离子电池正极材料的发展方向进行了展望。
以含油污泥为研究对象,粉煤灰、黏土、实验室自制液态黏结剂为复合黏结剂进行固化实验,探究不同黏结剂组分掺入量(以质量分数计)对固化块强度的影响,并确定最佳固化剂掺入量。结果表明,在粉煤灰掺入量30%、黏土掺入量10%、液态黏结剂掺入量5%的固化块强度达到最佳;在最佳工艺条件下,固化块的冷强度为2.19 MPa,热强度为2.21 MPa,具有足够的冷强度和热稳定性。利用傅里叶红外光谱(FT?IR)、X射线衍射(XRD)和扫描电子显微镜(SEM)等技术手段研究固化块的成型机理,并根据表征结果提出固化块成型机理。
在海上油田砾石充填作业中,由于设计、井眼不规则、地层等原因导致充填不完全或充填失败,严重影响油井产量。设计研发了一种新型多流道旁通筛管,在常规充填结束后,旁通通道继续对亏空段进行充填。通过自研的大型全尺寸水平井度砾石充填实验模拟系统,对所设计的多流道旁通筛管进行了性能评价。结果表明,在无砂桥旁通管砾石充填实验中,旁通段充填效率为100.0%,连接输送玻璃管时出口处返液流量与输送玻璃管返液流量比为0.68
滑溜水在裂缝中的携砂运移规律,对指导滑溜水压裂实践有重要意义。采用可视化平行板裂缝模拟装置,测试了不同注入参数组合的输砂剖面。结果表明,造缝滑溜水+70~140目支撑剂+8%砂比时,滑溜水携砂能力好,裂缝入口端未出现砂堤,支撑剂对裂缝的充填不充分;在低黏滑溜水+40~70目支撑剂+15%砂比和高黏滑溜水+20~40目支撑剂+20%砂比条件下,裂缝填砂量较大,深部裂缝砂堤较高,但裂缝入口处充填差;随着施工排量的增加,几种组合模式均表现出砂堤前缘距入口距离增大,前缘高度减小,平衡高度变化不大的情况。注入组合是影响砂堤形态的重要因素,不同注入参数组合模式对应的砂堤形态和表征参数相差较大,现场需对组合模式进行优化,提高入口处裂缝的导流能力。
以六水合氯化铈为前驱体、氯化钠为模板、牛奶为碳源,制备CeO2修饰的三维氮、磷掺杂的碳基催化剂(CeO2?NPC)。通过旋转圆盘电极(RDE)以及旋转环盘电极(RRDE),分析催化剂的制备条件对氧还原反应(ORR)过程的影响;结合X射线光电子能谱(XPS)、拉曼光谱等表征,探究合成过程对结构的影响。通过改变煅烧温度发现,温度升高的过程中N、P等杂元素会随着小分子溢出,碳载体上的缺陷程度增加,CeO2的质量分数一直处于上升趋势。
负载型SnCl2是一种无汞乙炔氢氯化催化剂,为了增强SnCl2催化剂的乙炔氢氯化反应性能,通过引入乙酰丙酮配体(acetylacetone)制备了5.0%Sn(acac)2Cl2/AC催化剂,并对催化剂的物化性能进行了分析。结果表明,在乙炔体积空速为90 h-1、乙炔与HCl物质的量比为1∶1.1、反应温度为170 ℃的条件下,5.0%Sn(acac)2Cl2/AC催化剂的乙炔转化率达到96%,高于5.0%SnCl2/AC催化剂的乙炔转化率;结合反应前后催化剂的性能表征,证实引入乙酰丙酮配体可增强SnCl2催化剂的乙炔吸附能力,同时还可起到抑制反应过程中锡流失的作用,有效地提高了SnCl2催化剂的反应活性和稳定性。
导电聚合物材料因导电率高、质量轻、防腐蚀、电学和光学性能良好等优点引起科研工作者的兴趣。其中,聚吡咯作为典型的导电高分子材料,因其合成条件简单,且具有良好的环境稳定性、环境友好性、电导率变化范围广且可调节等优点而备受关注,但它存在难溶解、难熔融、力学性能及加工性能较差等缺点,限制了其应用。聚吡咯与其他材料复合形成的复合材料,在改善聚吡咯缺点的同时结合了二者的优点,赋予材料新的性能,拓宽了材料的应用领域。简述了聚吡咯的主要合成方法,分析了每种方法的优势与缺点,并对其在超级电容器、气敏传感器和生物组织工程等领域的应用进行了总结,讨论了聚吡咯复合材料所面临的问题及解决方案,对未来的发展进行了展望。
采用乳液聚合法制备出一种微孔喉封堵材料。通过FT?IR光谱、拉曼光谱及TG?DTA热分析,对微孔喉封堵材料的结构特征进行分析。通过激光粒度仪确定合成产物的粒径范围,探究了微孔喉封堵材料的抑制性能和封堵性能。结果表明,合成产物的热分解温度为321.0 ℃,粒径分布为500~2 250 nm;当微孔喉封堵材料质量分数为1.5%时,该材料表现出极佳的抑制黏土水化性能;微孔喉封堵材料与质量分数为0.5%的氯化钠复配使用后,抑制效果显著提升。滤膜封堵实验证实其对0.45~10.00 μm孔径的滤膜进行有效封堵,微孔喉封堵材料质量分数为1.5%时封堵时间长达35.43 min;经120 ℃老化16 h后,高温高压滤失量为10.0 mL。
以自制的一种长链阳离子表面活性剂(SFC111)和低界面能物质(SFC115)构建出阳离子型乳液,研究其作为低渗透油气藏用表面活性剂性能。通过粒度仪考察乳液在水中的分散性,通过接触角测定仪考察经乳液处理前后岩心的接触角,通过旋转滴界面张力仪测试表面张力;通过计算得到乳液在20、70 ℃的热力学参数。结果表明,质量分数为0.5%的乳液在20 ℃时D50=420.8 nm,70 ℃时D50=728.0 nm;清水在岩心表面上的接触角从10°最大可增至120°;70 ℃下乳液可将清水的表面张力降至24 mN/m,表现出良好的防水锁性能。乳液符合langmuir吸附理论,其热力学结果表明,随着温度的升高,乳液表面吸附量降低,乳液表面分子所占面积减小,吸附层厚度降低。
准葛尔盆地南缘深层气藏埋藏深,具有高温高压、非均质性较强等特点,采用暂堵转向分层分段改造工艺实现了高效改造,提高了储集层动用程度。开展了140~180 ℃高温条件下暂堵剂对裂缝和炮眼的封堵实验研究,针对性评价了5种暂堵材料的降解速率和承压能力。结果表明,常用的暂堵材料在高温下会软化,在驱替压差下易随携带液流动,导致暂堵段承压能力下降,失去封堵效果。优选了在180 ℃下承压能力达30.00 MPa的暂堵材料,现场应用结果显示采用暂堵剂后产量显著增加。
原油管道电耗的准确预测能够用于控制原油管道耗能水平,充分挖掘原油管道输送系统的节能潜力。实际采集到的原油管道运行数据具有波动范围大的特点,且存在严重的噪声干扰和信息冗余,对精确预测管道电耗造成不良影响。为解决上述问题,提出一种基于混合神经网络的电耗预测模型。利用自适应噪声的完备集成经验模态分解,对原油管道日运行数据进行分解;利用主成分分析对分解后数据做降维处理;利用改进粒子群算法调节神经网络结构参数;使用该模型预测某原油管道电耗,并与常见的几种预测模型展开对比。结果表明,分解算法能够提高模型预测精度;该混合神经网络模型预测精度最高,其测试集的平均绝对误差为5.394%,较使用分解算法前降低39.200%。
为评价浅海海底天然气管道泄漏事故后果,根据计算流体力学与多相流动理论,针对国外某天然气管道海峡穿越段,建立浅海海底管道泄漏扩散过程的计算模型。将泄漏孔径、泄漏速率、水流速度3个主要影响因素作为条件变量,模拟不同情况下的气液两相运动过程。结果表明,水下气体扩散分为三个阶段,即泄漏口上方形成气团、气团呈蘑菇状上升、气团由大气泡分裂为小气泡;泄漏孔径和泄漏速率对水下气体扩散到水面的时间具有显著影响,泄漏孔径与泄漏速率越大,气体泄漏量越大;气体泄漏量越大,水下气团体积越大,到达水面的时间越短;水流速度显著影响气体的扩散轨迹,水流速度越大,气体运动轨迹与海底的夹角越小,沿海流方向扩散的距离越远。研究结果可为水下天然气管道泄漏事故应急处理提供一定的科学指导。