1 |
易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369.
|
|
YI H M, LÜ Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369.
|
2 |
XU C L, ZHAO J M, YANG C, et al. Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life[J]. ACS Central Science, 2023, 9(9): 1721-1736.
|
3 |
GU Z Y, GUO J Z, CAO J M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J]. Advanced Materials, 2022, 34(14): 2110108.
|
4 |
宋维鑫, 侯红帅, 纪效波. 磷酸钒钠Na3V2(PO4)3电化学储能研究进展[J]. 物理化学学报, 2017, 33(1): 103-129.
|
|
SONG W X, HOU H S, JI X B. Progress in the investigation and application of Na3V2(PO4)3 for electrochemical energy storage[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 103-129.
|
5 |
张荣华, 邓刚, 庞立娟, 等. 钠离子电池正极材料磷酸钒钠的研究进展[J]. 电源技术, 2017, 41(10): 1505-1508.
|
|
ZHANG R H, DENG G, PANG L J, et al. Research progress of sodium vanadium phosphate as cathode mterial for sodium-ion battery[J]. Chinese Journal of Power Sources, 2017, 41(10): 1505-1508.
|
6 |
牛艺蒙, 刘海峰. 核壳结构SiC-W@SiO2/PVDF复合材料的制备与储能特性[J]. 东北石油大学学报, 2018, 42(3): 102-112.
|
|
NIU Y M, LIU H F. Preparation and energy storage performance of core@shell SiC-W@SiO2/PVDF composite[J]. Journal of Northeast Petroleum University, 2018, 42(3): 102-112.
|
7 |
LEI L J, SUN K L, ZHAO H W, et al. Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at -20 °C[J]. Journal of Energy Storage, 2024, 78: 109923.
|
8 |
解自奇, 谭玉婷, 赵妮, 等. Mg2+掺杂对富锂层状氧化物材料Li1.2Mn0.54Ni0.13Co0.13O2的影响[J]. 辽宁石油化工大学学报, 2024, 44(2): 22-28.
|
|
XIE Z Q, TAN Y T, ZHAO N, et al. Effect of Mg2+ doping on Li-rich layered oxides materials Li1.2Mn0.54Ni0.13Co0.13O2[J]. Journal of Liaoning Petrochemical University, 2024, 44(2): 22-28.
|
9 |
SHAO L G, JIN S Z. Resilience assessment of the lithium supply chain in China under impact of new energy vehicles and supply interruption[J]. Journal of Cleaner Production, 2020, 252: 119624.
|
10 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie (International ed. in English), 2018, 57(1): 102-120.
|
11 |
周文斌, 彭茜茜, 陈龙, 等. 废三元锂离子电池锂优先浸出技术[J]. 化工环保, 2022, 42(5): 587-591.
|
|
ZHOU W B, PENG Q Q, CHEN L, et al. Preferentially leaching of lithium from spent ternary lithium-ion batteries[J]. Environmental Protection of Chemical Industry, 2022, 42(5): 587-591.
|
12 |
ZHANG B W, MA K X, LÜ X, et al. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: Synthesis, modifications, and perspectives[J]. Journal of Alloys and Compounds, 2021, 867: 159060.
|
13 |
YANG Z, LI G L, SUN J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 25: 724-730.
|
14 |
王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6): 76-82.
|
|
WANG Y G, WANG W. Study on preparation of tin diselenide nanosheets and their sodium storage behaviors[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 76-82.
|
15 |
田澍. 一维MoSe2@C钠离子电池负极材料的研究[J]. 当代化工, 2023, 52(4): 862-866.
|
|
TIAN S. Research on anode materials of one dimensional MoSe2@C sodium ion battery[J]. Contemporary Chemical Industry, 2023, 52(4): 862-866.
|
16 |
游济远, 曹永安, 孟绍良, 等. 钠离子电池正极材料研究进展[J]. 石油化工高等学校学报, 2022, 35(2): 1-8.
|
|
YOU J Y, CAO Y A, MENG S L, et al. Progress in cathode materials for sodium-ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(2): 1-8.
|
17 |
GU Q Y, DAI M S, ZHANG X L, et al. High-performance Na3V2(PO4)3 cathode material embedded in three-dimensional porous carbon derived from tea leaves[J]. Chemical Physics Letters, 2024, 856: 141574.
|
18 |
LIU Q N, HU Z, CHEN M Z, et al. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs[J]. Advanced Functional Materials, 2020, 30(14): 1909530.
|
19 |
HE F, KANG J Y, LIU T L, et al. Research progress on electrochemical properties of Na3V2(PO4)3 as cathode material for sodium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62(8): 3444-3464.
|
20 |
WANG Q C, GAO H C, LI J B, et al. Importance of crystallographic sites on sodium-ion extraction from NASICON-structured cathodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14312-14320.
|
21 |
WANG S J, HU L Z, LI X H, et al. Carbon enhanced nucleophilicity of Na3V2(PO4)3: A general approach for dendrite-free zinc metal anodes[J]. Journal of Energy Chemistry, 2024, 91: 203-212.
|
22 |
ZHOU T, CHEN Y J. Thiourea induced the N/S co-doped carbon skeleton suppressing the dissolution of V to boost superior cyclic stability of Na3V2(PO4)3[J]. Carbon, 2024, 218: 118778.
|
23 |
ZHAO T L, XIE S H, LIU J H, et al. Na3V2(PO4)3/C cathode material with three-dimensional interconnected porous structure constructed using cotton soft tissue as carbon source[J]. Inorganic Chemistry Communications, 2022, 144: 109881.
|