1 |
曲虎,陆诗建,杨佳朋,等.双碳背景下油田清洁能源利用工艺可行性探讨[J].低碳化学与化工,2024,49(4):79-89.
|
|
QU H,LU S J,YANG J P,et al.Feasibility discussion on clean energy utilization process in oilfields under background of carbon peaking and carbon neutrality[J].Low-Carbon Chemistry and Chemical Engineering,2024,49(4):79-89.
|
2 |
ZHANG H,SONG B,ZHANG W W,et al.Bidirectional tandem electrocatalysis manipulated sulfur speciation pathway for high-capacity and stable Na-S battery[J].Angewandte Chemie (International ed.in English),2023,62(6):e202217009.
|
3 |
WEN Y,NEVILLE T P,JORGE SOBRIDO A,et al.Bismuth concentration influenced competition between electrochemical reactions in the all-vanadium redox flow battery[J].Journal of Power Sources,2023,566:232861.
|
4 |
解自奇,谭玉婷,赵妮,等.Mg2+掺杂对富锂层状氧化物材料Li1.2Mn0.54Ni0.13Co0.13O2的影响[J].辽宁石油化工大学学报,2024,44(2):22-28.
|
|
XIE Z Q,TAN Y T,ZHAO N,et al.Effect of Mg2+ doping on Li-rich layered oxides materials Li1.2Mn0.54Ni0.13Co0.13O2[J].Journal of Liaoning Petrochemical University,2024,44(2):22-28.
|
5 |
朱紫宸,李雷,王红涛,等.钠离子电池有机聚合物电解质的研究进展[J].当代化工,2024,53(6):1457-1462.
|
|
ZHU Z C,LI L,WANG H T,et al.Research progress in organic polymer electrolytes for sodium ion batteries[J].Contemporary Chemical Industry,2024,53(6):1457-1462.
|
6 |
靳爱民.硅负极结构为锂离子电池带来了新的发展潜力[J].石油炼制与化工,2021,52(6):63.
|
|
JIN A M.Silicon negative electrode structure brings new development potential for lithium-ion batteries[J].Petroleum Processing and Petrochemicals,2021,52(6):63.
|
7 |
刘文蕊.废旧锂离子电池关键组件回收技术研究进展[J].化工环保,2024,44(4):469-478.
|
|
LIU W R.Research progress on recycling technology of key components for spent lithium-ion batteries[J].Environmental Protection of Chemical Industry,2024,44(4):469-478.
|
8 |
李莹,来雪琦,曲津朋,等.钠离子电池用高性能锑基负极材料的调控策略研究进展[J].物理化学学报,2022,38(11):45-71.
|
|
LI Y,LAI X Q,QU J P,et al.Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J].Acta Physico-Chimica Sinica,2022,38(11):45-71.
|
9 |
ZUO W H,INNOCENTI A,ZARRABEITIA M,et al.Layered oxide cathodes for sodium-ion batteries:Storage mechanism,electrochemistry,and techno-economics[J].Accounts of Chemical Research,2023,56(3):284-296.
|
10 |
贺柳洋,李晓杰,王婵,等.石墨烯掺杂对三元钠离子电池正极材料电化学性能的影响[J].石油化工高等学校学报,2023,36(6):64-72.
|
|
HE L Y,LI X J,WANG C,et al.Effect of graphene doping on electrochemical performance of cathode materials of ternary sodium-ion batteries[J].Journal of Petrochemical Universities,2023,36(6):64-72.
|
11 |
杨涵,张一波,李琦,等.面向实用化的钠离子电池碳负极:进展及挑战[J].化工进展,2023,42(8):4029-4042.
|
|
YANG H,ZHANG Y B,LI Q,et al.Practical carbon anodes for sodium-ion batteries:Progress and challenge[J].Chemical Industry and Engineering Progress,2023,42(8):4029-4042.
|
12 |
孙媛媛,李思卿,王成儒,等.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].稀有金属,2022,46(6):776-795.
|
|
SUN Y Y,LI S Q,WANG C R,et al.Research progress of layered transition metal oxide cathode materials for sodium ion batteries[J].Chinese Journal of Rare Metals,2022,46(6):776-795.
|
13 |
VAALMA C,BUCHHOLZ D,WEIL M,et al.A cost and resource analysis of sodium-ion batteries[J].Nature Reviews Materials,2018,3(4):18013.
|
14 |
闫佳昕,左朋建.层状氧化物及普鲁士蓝类似物在钠离子电池中的研究进展[J].中国科学(化学),2022,52(10):1747-1758.
|
|
YAN J X,ZUO P J.Research progress of layered oxides and Prussian blue analogs in sodium ion batteries[J].Scientia Sinica(Chimica),2022,52(10):1747-1758.
|
15 |
YANG Y H,WANG Q,HOU J R,et al.Enhancing reversibility and kinetics of anionic redox in O3-NaLi1/3Mn2/3O2 through controlled P2 intergrowth[J/OL].Angewandte Chemie International Edition,2024:e202411059(2024-07-16)[2024-07-12].https://doi.org/10.1002/anie.202411059.
|
16 |
MA S B,ZOU P C,XIN H L.Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability[J].Materials Today Energy,2023,38:101446.
|
17 |
WU F,DONG J Y,ZHAO J Y,et al.Reversible cationic-anionic redox in disordered rocksalt cathodes enabled by fluorination-induced integrated structure design[J].Journal of Energy Chemistry,2023,82:158-169.
|
18 |
SATHIYA M,THOMAS J,BATUK D,et al.Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J].Chemistry of Materials,2017,29(14):5948-5956.
|
19 |
GUO S H,YI J,SUN Y,et al.Recent advances in titanium-based electrode materials for stationary sodium-ion batteries[J].Energy & Environmental Science,2016,9(10):2978-3006.
|
20 |
KUBOTA K,KUMAKURA S,YODA Y,et al.Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals)[J].Advanced Energy Materials,2018,8(17):1703415.
|
21 |
TALAIE E,KIM S Y,CHEN N,et al.Structural evolution and redox processes involved in the electrochemical cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2[J].Chemistry of Materials,2017,29(16):6684-6697.
|
22 |
KOMABA S,YABUUCHI N,NAKAYAMA T,et al.Study on the reversible electrode reaction of Na1- xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J].Inorganic Chemistry,2012,51(11):6211-6220.
|
23 |
VORONINA N,YAQOOB N,KIM H J,et al.A new approach to stable cationic and anionic redox activity in O3‐layered cathode for sodium‐ion batteries[J].Advanced Energy Materials,2021,11(25):2100901.
|
24 |
YABUUCHI N,KAJIYAMA M,IWATATE J,et al.P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J].Nature Materials,2012,11(6):512-517.
|
25 |
YANG L,LUO S H,WANG Y F,et al.Cu-doped layered P2-type Na0.67Ni0.33- xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries[J].Chemical Engineering Journal,2021,404:126578.
|
26 |
ZHOU P F,ZHANG J,CHE Z N,et al.Insights into the enhanced structure stability and electrochemical performance of Ti4+/F- co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage[J].Journal of Energy Chemistry,2022,67:655-662.
|
27 |
WANG H J,GAO X,ZHANG S,et al.High-entropy Na-deficient layered oxides for sodium-ion batteries[J].ACS Nano,2023,17(13):12530-12543.
|
28 |
DING F X,WANG H B,ZHANG Q H,et al.Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes[J].Journal of the American Chemical Society,2023,145(25):13592-13602.
|
29 |
LEE E,LU J,REN Y,et al.Layered P2/O3 intergrowth cathode:Toward high power Na-ion batteries[J].Advanced Energy Materials,2014,4(17):1400458.
|
30 |
LI Z Y,ZHANG J C,GAO R,et al.Li-substituted Co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2- xLixO2 as high-rate-capability cathode materials for sodium ion batteries[J].The Journal of Physical Chemistry C,2016,120(17):9007-9016.
|
31 |
ZHANG X L,HUANG Z X,LIU Y N,et al.Tuning oxygen release of sodium-ion layered oxide cathode through synergistic surface coating and doping[J].Journal of Colloid and Interface Science,2023,650(Pt A):742-751.
|
32 |
YU Z L,HUANG H,LIU Y J,et al.Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries[J].Nano Energy,2022,96:107071.
|
33 |
JIN T,WANG P F,WANG Q C,et al.Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries[J].Angewandte Chemie International Edition,2020,59(34):14511-14516.
|
34 |
WANG Y,ZHAO X D,JIN J T,et al.Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior[J].Energy Storage Materials,2022,47:44-50.
|
35 |
HUANG J Y,LI W L,YE D B,et al.Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry[J].Journal of Energy Chemistry,2024,94:466-476.
|
36 |
HAO D B,ZHANG G Y,NING D,et al.Design of high-entropy P2/O3 hybrid layered oxide cathode material for high-capacity and high-rate sodium-ion batteries[J].Nano Energy,2024,125:109562.
|
37 |
XIAO J,XIAO Y,WANG S J,et al.Surface engineering of P2-type cathode material targeting long-cycling and high-rate sodium-ion batteries[J].Journal of Energy Chemistry,2024,97:444-452.
|
38 |
ZHENG W,LIANG G M,LIU Q,et al.The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries[J].Joule,2023,7(12):2732-2748.
|
39 |
WALCZAK K,PLEWA A,GHICA C,et al.NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries[J].Energy Storage Materials,2022,47:500-514.
|
40 |
MA Y J,HU Y,PRAMUDYA Y,et al.Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries[J].Advanced Functional Materials,2022,32(34):2202371.
|
41 |
TARASCON J M,VAUGHAN G,CHABRE Y,et al.In situ structural and electrochemical study of Ni1- xCoxO2 metastable oxides prepared by soft chemistry[J].Journal of Solid State Chemistry,1999,147(1):410-420.
|
42 |
SATHIYA M,ROUSSE G,RAMESHA K,et al.Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J].Nature Materials,2013,12(9):827-835.
|
43 |
XIE Y,SAUBANÈRE M,DOUBLET M L.Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries[J].Energy & Environmental Science,2017,10(1):266-274.
|
44 |
ASSAT G,TARASCON J M.Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J].Nature Energy,2018,3(5):373-386.
|
45 |
LIU S Z,LU F,LI H D,et al.Na2Ru0.8Mn0.2O3:A novel cathode material for ultrafast sodium ion battery with large capacity and superlong cycle life[J].Journal of Power Sources,2019,421:14-22.
|
46 |
CRAFTON M J,YUE Y,HUANG T Y,et al.Anion reactivity in cation-disordered rocksalt cathode materials:The influence of substitution[J].Advanced Energy Materials,2020,10(35):2001500.
|
47 |
SU G Q,LI L J,SHI Z,et al.Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries[J].Applied Surface Science,2023,608:155097.
|
48 |
XU X Q,HU S J,PAN Q C,et al.Enhancing structure stability by Mg/Cr Co-doped for high-voltage sodium-ion batteries[J].Small,2024,20(12):2307377.
|
49 |
FENG J,LUO S H,WANG J C,et al.Stable electrochemical properties of magnesium-doped co-free layered P2-type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries[J].ACS Sustainable Chemistry & Engineering,2022,10(15):4994-5004.
|
50 |
ZHENG J X,SUN R,MENG D P,et al.Boosting oxygen evolution reaction performance via metal defect-induced lattice oxygen redox reactions on spinel oxides[J].Journal of Materials Chemistry A,2023,11(27):15044-15053.
|
51 |
DU K,ZHU J Y,HU G R,et al.Exploring reversible oxidation of oxygen in a manganese oxide[J].Energy & Environmental Science,2016,9(8):2575-2577.
|
52 |
BAI X,IADECOLA A,TARASCON J M,et al.Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides[J].Energy Storage Materials,2020,31:146-155.
|
53 |
SHEN Q Y,LIU Y C,ZHAO X D,et al.Transition‐metal vacancy manufacturing and sodium‐site doping enable a high‐performance layered oxide cathode through cationic and anionic redox chemistry[J].Advanced Functional Materials,2021,31(51):2106923.
|
54 |
KONAROV A,JO J H,CHOI J U,et al.Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries[J].Nano Energy,2019,59:197-206.
|
55 |
YANG L,LIU Z P,LIU S,et al.Superiority of native vacancies in activating anionic redox in P2-type Na2/3[Mn7/9Mg1/9□1/9]O2[J].Nano Energy,2020,78:105172.
|
56 |
RAMESH A,TRIPATHI A,BOSMAN M,et al.Enhancement in rate performance and high voltage structural stability of P3/O3 Na0.9Fe0.5Mn0.45Ni0.05O2 layered oxide cathode[J].Journal of Electroanalytical Chemistry,2023,932:117222.
|
57 |
ZHANADILOV O,BAIJU S,VORONINA N,et al.Impact of transition metal layer vacancy on the structure and performance of P2 type layered sodium cathode material[J].Nano-Micro Letters,2024,16(1):239.
|
58 |
WU Y J,SHUANG W,WANG Y,et al.Recent progress in sodium-ion batteries:Advanced materials,reaction mechanisms and energy applications[J].Electrochemical Energy Reviews,2024,7(1):17.
|
59 |
LIANG H J,LIU H H,ZHAO X X,et al.Interphase engineering by tunable redox of (p-d) π-bond additive toward extended lifespan of sodium-ion batteries[J].Energy Storage Materials,2024,71:103633.
|
60 |
DAI D M,LAI X B,WANG X J,et al.Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage[J].Chinese Chemical Letters,2024,35(10):109405.
|
61 |
LU H Y,CHU S Y,TIAN J M,et al.Ultra-high-energy density in layered sodium-ion battery cathodes through balancing lattice-oxygen activity and reversibility[J].Advanced Functional Materials,2024,34(2):2305470.
|
62 |
HU H Y,WANG H R,ZHU Y F,et al.A universal strategy based on bridging microstructure engineering and local electronic structure manipulation for high-performance sodium layered oxide cathodes[J].ACS Nano,2023,17(16):15871-15882.
|
63 |
YU Y,NING D,LI Q Y,et al.Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries[J].Energy Storage Materials,2021,38:130-140.
|
64 |
LING Z X,WU L Y,HU C G,et al.Prolonging the cycle stability of anion redox P3-type Na0.6Li0.2Mn0.8O2 through Al2O3 atomic layer deposition surface modification[J].ACS Applied Materials & Interfaces,2024,16(2):2319-2329.
|
65 |
LING Z X,WU L Y,XIANG Y X,et al.Improving the electrochemical performance of an anionic redox P3-type layered oxide cathode by the synergistic effect by sodium metaborate coating and boron doping[J].Journal of Materials Chemistry A,2024,12(28):17453-17462.
|