1 |
SHEN H T, ZHAO H Q, KANG M M, et al. Sodium storage in coal/biomass-derived carbon/carbon 3D networks[J]. ChemElectroChem, 2019, 6(17): 4541-4544.
|
2 |
XUE H T, SUN Q, LU R F, et al. Pyrolysis of coal pitch-infused melamine foam to construct N-doped carbon anodes for high-performance sodium-ion battery[J]. Journal of Electroanalytical Chemistry, 2021, 902: 115809.
|
3 |
ZHANG M H, LI Y, WU F, et al. Boosting the ultrahigh initial coulombic efficiency of porous carbon anodes for sodium-ion batteries fabrication of a passivation interface[J]. Journal of Materials Chemistry A, 2021, 9(17): 10780-10788.
|
4 |
LI H Q, HE X J, WU T T, et al. Synthesis, modification strategies and applications of coal-based carbon materials[J]. Fuel Processing Technology, 2022, 230: 107203.
|
5 |
LI Q, LIU X S, TAO Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084.
|
6 |
SONG M X, YI Z L, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629.
|
7 |
ZHAO H Q, ZHAO D, YE J Q, et al. Directional oxygen functionalization by defect in different metamorphic-grade coal-derived carbon materials for sodium storage[J]. Energy & Environmental Materials, 2022, 5(1): 313-320.
|
8 |
CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, 35(31): 2212186.
|
9 |
MERCER M P, NAGARATHINAM M, GAVILAN-ARRIAZU E M, et al. Sodiation energetics in pore size controlled hard carbons determined via entropy profiling[J]. Journal of Materials Chemistry A, 2023, 11(12): 6543-6555.
|
10 |
SONG M H, SONG Q, ZHANG T, et al. Growing curly graphene layer boosts hard carbon with superior sodium-ion storage[J]. Nano Research, 2023, 16(7): 9299-9309.
|
11 |
程婷, 时志强. 钠离子电池硬炭负极研究进展[J]. 山东化工, 2023, 52(20): 120-122.
|
|
CHENG T, SHI Z Q. Research progress of hard carbon anode for sodium-ion batteries[J]. Shandong Chemical Industry, 2023, 52(20): 120-122.
|
12 |
THAPALIYA B P, LUO H M, LI M Y, et al. Molten salt assisted low-temperature electro-catalytic graphitization of coal chars[J]. Journal of the Electrochemical Society, 2021, 168(4): 046504.
|
13 |
CHEN H, SUN N, ZHU Q Z, et al. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J]. Advanves Science, 2022, 9(20): 2200023.
|
14 |
MOHAMED A M A, DONG S, ELHEFNAWEY M, et al. A comparison of the electrochemical performance of graphitized coal prepared by high-temperature heating and flash Joule heating as an anode material for lithium and potassium ion batteries[J]. Chemical Physics Letters, 2023, 815: 140362.
|
15 |
ZHANG H, ZHANG Y G, LI J, et al. Advantages of structure and electrochemical properties of graphene prepared from tectonically deformed coal[J]. ACS Omega, 2023, 8(28): 25142-25154.
|
16 |
ZHANG W, SUN N, CHEN H, et al. Molten salt assisted fabrication of coal-based carbon anode materials for efficient Na ion storage[J]. Inorganic Chemistry Frontiers, 2023, 10(17): 5117-5126.
|
17 |
黄晓伟, 温裕丰. 钠离子电池用硬碳负极材料研究进展[J]. 当代化工研究, 2023(21): 7-9.
|
|
HUANG X W, WEN Y F. Research progress of hard carbon anode materials for sodium ion batteries[J]. Modern Chemical Research, 2023(21): 7-9.
|
18 |
荣强, 周露. 钠离子电池电极材料研究进展[J]. 电源技术, 2023, 47(9): 1130-1134.
|
|
RONG Q, ZHOU L. Research progress on electrode materials for sodium-ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(9): 1130-1134.
|
19 |
谢浩杰, 郑冬芳, 罗霞, 等. 钠离子电池关键材料研究进展[J]. 浙江化工, 2023, 54(12): 8-14.
|
|
XIE H J, ZHENG D F, LUO X, et al. Research progress on key materials for sodium-ion batteries[J]. Zhejiang Chemical Industry, 2023, 54(12): 8-14.
|
20 |
赵旭瞳, 龚文琦, 沈琪彬, 等. 嵌钠深度对钠离子电池硬碳负极存储性能的影响[J]. 广州化学, 2023, 48(6): 57-60.
|
|
ZHAO X T, GONG W Q, SHEN Q B, et al. Effect of sodiated degree on storage performance of hard carbon anode in sodium ion batteries[J]. Guangzhou Chemistry, 2023, 48(6): 57-60.
|
21 |
郑海峰, 郭明聪, 马畅, 等. 钠电负极用碳材料的种类概述与研究现状[J]. 炭素, 2023(3): 30-33.
|
|
ZHENG H F, GUO M C, MA C, et al. Overview of the development process and types of sodium-electric carbon-based anode materials[J]. Carbon, 2023(3): 30-33.
|
22 |
张利星, 张熊, 李晨, 等. 煤基碳负极材料在锂离子电池中的应用研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 10-18.
|
|
ZHANG L X, ZHANG X, LI C, et al. Research progress of application of coal-based carbon anode materials in lithium-ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(6): 10-18.
|
23 |
YANG J, MA L L, ZHOU X Y. Purification process of coal-based coke powder as anode for Li-ion batteries[J]. Journal of Central South University, 2014, 21(3): 857-861.
|
24 |
LI M Y, TSAI W Y, THAPALIYA B P, et al. Modified coal char materials with high rate performance for battery applications[J]. Carbon, 2021, 172: 414-421.
|
25 |
LE M K, TRAN T N, HUYNH T K T, et al. Development of Vang Danh anthracite as a cost-effective anode for sodium-ion batteries through a heat-treatment process[J]. RSC Advances, 2022, 12(46): 29900-29907.
|
26 |
LU H Y, SUN S F, XIAO L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735.
|
27 |
LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197.
|
28 |
CHEN F, MA L L, REN J G, et al. Surface modification of coal-based coke powder with pitch powder for lithium ion batteries[J]. International Journal of Electrochemical Science, 2018, 13(3): 2206-2218.
|
29 |
ZHAO D, ZHAO H Q, YE J Q, et al. Oxygen functionalization boosted sodium adsorption-intercalation in coal based needle coke[J]. Electrochimica Acta, 2020, 329: 135127.
|
30 |
HAN L, ZHU X, YANG F, et al. Eco-conversion of coal into a nonporous graphite for high-performance anodes of lithium-ion batteries[J]. Powder Technology, 2021, 382: 40-47.
|
31 |
ZHU Z L, ZUO H B, LI S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage[J]. Journal of Materials Chemistry A, 2019, 7(13): 7533-7540.
|
32 |
WANG K F, SUN F, WANG H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials, 2022, 32(34): 2203725.
|
33 |
LOU Z J, WANG H, WU D Y, et al. Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage[J]. Fuel, 2022, 310(Part B): 122072.
|
34 |
SU M Y, ZHANG K Y, ANG E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation[J]. Rare Metals, 2024, 43(6): 2585-2596.
|
35 |
XIAO N, ZHANG X Y, LIU C, et al. Coal-based carbon anodes for high-performance potassium-ion batteries[J]. Carbon, 2019, 147: 574-581.
|
36 |
ZHANG Y T, ZHANG K B, REN S Z, et al. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 792: 828-834.
|
37 |
CHEN J F, FENG J M, DONG L, et al. Nanoporous coal via Ni-catalytic graphitization as anode materials for potassium ion battery[J]. Journal of Electroanalytical Chemistry, 2020, 862: 113902.
|
38 |
DONG D, ZHANG Y S, XIAO Y, et al. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials[J]. Journal of Colloid and Interface Science, 2020, 580: 77-87.
|
39 |
LIU H M, HUANG X N, LU Z J, et al. Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc-air batteries[J]. Nanoscale, 2020, 12(17): 9628-9639.
|
40 |
ZHOU X Y, MA L L, YANG J, et al. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2013, 698: 39-44.
|
41 |
LI X, SUN N, TIAN X D, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber non-woven fabrics as high performance electrodes for lithium/potassium battery[J]. Energy & Fuels, 2020, 34(2): 2445-2451.
|
42 |
YAN S X, WANG Q, LUO S H, et al. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries[J]. Journal of Power Sources, 2020, 461: 228151.
|
43 |
GAO S S, LIU L, MAO F F, et al. Coal-based ultrathin N-doped carbon nanosheets synthesized by molten-salt method for high-performance lithium-ion batteries[J]. Nanotechnology, 2022, 33(42): 425401.
|
44 |
TAN Y C, LIU W W, WANG W Y, et al. Embedment of red phosphorus in anthracite matrix for stable battery anode[J]. Rare Metals, 2022, 41(8): 2819-2825.
|
45 |
SONG W J, TANG Y K, LIU J M, et al. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 946: 169384.
|
46 |
LIANG H, ZENG H H, XING B L, et al. N/O/P ternary-doped coal-based hierarchical porous carbon networks for high lithium-ion storage performance[J]. Journal of Alloys and Compounds, 2023, 968: 172015.
|
47 |
ZENG H H, XING B L, ZHANG C X, et al. Edge-boron-functionalized coal-derived graphite nanoplatelets prepared via mechanochemical modification for enhanced Li-ion storage at low-voltage plateau[J]. Applied Surface Science, 2023, 621: 156870.
|
48 |
LI R, YANG B R, HU A J, et al. Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries[J]. Carbon, 2023, 215: 118489.
|
49 |
WEI C H, DANG W L, LI M J, et al. Hard-soft carbon nanocomposite prepared by pyrolyzing biomass and coal waste as sodium-ion batteries anode material[J]. Materials Letters, 2023, 330: 133368.
|
50 |
CHEN H, SUN N, WANG Y X, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541.
|
51 |
ZHOU Z R, WANG Z J, FAN L S. In-situ capture defects through molecule grafting assisted in coal-based hard carbon anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2024, 490: 151428.
|
52 |
王国良, 狄心莹. 一种基于PCA和相关向量机的锂电池在线寿命预测方法研究[J]. 辽宁石油化工大学学报, 2022, 42(6): 84-89.
|
|
WANG G L, DI X Y. A method for online life prediction of lithium batteries based on PCA and relevance vector machine[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2022, 42(6): 84-89.
|
53 |
沈紫烨, 王利娟. 高比容量Li2ZnTi3O8@C-N负极材料储锂性能研究[J]. 石油化工高等学校学报, 2022, 35(3): 1-9.
|
|
SHEN Z Y, WANG L J. Li-storage of Li2ZnTi3O8@C-N anode materials with high specific capacities[J]. Journal of Petrochemical Universities, 2022, 35(3): 1-9.
|
54 |
颜冬, 张舒冬, 李昱颖, 等. 双碳基电极锂离子电容器的研究进展[J]. 当代化工, 2023, 52(7): 1721-1728.
|
|
YAN D, ZHANG S D, LI Y Y, et al. Research progress of lithium-ion capacitors with double carbon-based electrodes[J]. Contemporary Chemical Industry, 2023, 52(7): 1721-1728.
|
55 |
王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6): 76-82.
|
|
WANG Y G, WANG W. Study on preparation of tin diselenide nanosheets and their sodium storage behaviors[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 76-82.
|
56 |
刘文蕊. 废旧锂离子电池关键组件回收技术研究进展[J]. 化工环保, 2024, 44(4): 469-478.
|
|
LIU W R. Research progress on recycling technology of key components for spent lithium-ion batteries[J]. Environmental Protection of Chemical Industry, 2024, 44(4): 469-478.
|
57 |
朱凌岳, 朱丽娜, 纪德强, 等. 低阶煤熔融体系电化学转化过程[J]. 东北石油大学学报, 2020, 44(4): 72-76.
|
|
ZHU L Y, ZHU L N, JI D Q, et al. Electrochemical conversion process of low-rank coal in the molten system[J]. Journal of Northeast Petroleum University, 2020, 44(4): 72-76.
|