1 |
NGUYEN T P,KIM I T.Recent advances in sodium-ion batteries:Cathode materials[J].Materials,2023,16(21):6869.
|
2 |
周凡宇,曾晋珏,王学斌.碳中和目标下电化学储能技术进展及展望[J].动力工程学报,2024,44(3):396-405.
|
|
ZHOU F Y,ZENG J J,WANG X B.Progress and prospect of electrochemical energy storage for carbon neutralization[J].Journal of Chinese Society of Power Engineering,2024,44(3):396-405.
|
3 |
周嘉琪,杨思然,艾绯雪,等.Co9S8@CNFs复合材料的制备及其在锂离子电池的应用[J].辽宁石油化工大学学报,2022,42(6):21-27.
|
|
ZHOU J Q,YANG S R,AI F X,et al.Preparation of Co9S8@CNFs composites and their application in lithium-ion batteries[J].Journal of Liaoning Petrochemical University,2022,42(6):21-27.
|
4 |
周娅,时润娜,郎笑石,等.钠离子电池正极材料V2O5研究进展[J].石油化工高等学校学报,2022,35(6):38-47.
|
|
ZHOU Y,SHI R N,LANG X S,et al.Research progress of V2O5 cathode material for sodium-ion batteries[J].Journal of Petrochemical Universities,2022,35(6):38-47.
|
5 |
李婧婧,李洪基,黄强,等.掺杂对钠离子电池正极材料性能影响机制的研究[J].化学进展,2022,34(4):857-869.
|
|
LI J J,LI H J,HUANG Q,et al.Study on the mechanism of the influence of doping on the properties of cathode materials of sodium ion batteries[J].Progress in Chemistry,2022,34(4):857-869.
|
6 |
刘飞,赵培文,赵经香,等.钠离子电池硬碳负极材料研究进展[J].储能科学与技术,2022,11(11):3497-3509.
|
|
LIU F,ZHAO P W,ZHAO J X,et al.Research progress of hard carbon anode materials for sodium ion batteries[J].Energy Storage Science and Technology,2022,11(11):3497-3509.
|
7 |
GOIKOLEA E,PALOMARES V,WANG S J,et al.Na‐ion batteries-approaching old and new challenges[J].Advanced Energy Materials,2020,10(44):2002055.
|
8 |
CHU S Y,GUO S H,ZHOU H S.Advanced cobalt-free cathode materials for sodium-ion batteries[J].Chemical Society Reviews,2021,50(23):13189-13235.
|
9 |
WAN X Y,LI Y L,CHEN S H,et al.Cathode modification of sodium-ion batteries for improved energy density:A review[J/OL].Advanced Sustainable Systems,2024:2400229 (2024-07-23)[2024-08-16].https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400229.
|
10 |
MENDIBOURE A,DELMAS C,HAGENMULLER P.Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J].Journal of Solid State Chemistry,1985,57(3):323-331.
|
11 |
DAI K H,WU J P,ZHUO Z Q,et al.High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions[J].Joule,2019,3(2):518-541.
|
12 |
DELMAS C,FOUASSIER C,HAGENMULLER P.Structural classification and properties of the layered oxides[J].Physica B+C,1980,99(1-4):81-85.
|
13 |
DOEFF M M,PENG M Y,MA Y P,et al.Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries[J].Journal of the Electrochemical Society,1994,141(11):L145.
|
14 |
VASSILARAS P,MA X H,LI X,et al.Electrochemical properties of monoclinic NaNiO2[J].Journal of the Electrochemical Society,2012,160(2):A207-A211.
|
15 |
胡勇胜,陆雅翔,陈立泉.钠离子电池科学与技术[M].北京:科学出版社,2020.
|
16 |
YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
|
17 |
MA X H,CHEN H L,CEDER G.Electrochemical properties of monoclinic NaMnO2[J].Journal of the Electrochemical Society,2011,158(12):A1307.
|
18 |
WANG L G,WANG J J,ZHANG X Y,et al.Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries[J].Nano Energy,2017,34:215-223.
|
19 |
YUAN X G,GUO Y J,GAN L,et al.A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries[J].Advanced Functional Materials,2022,32(17):2111466.
|
20 |
HWANG T,LEE J H,CHOI S H,et al.Critical role of titanium in O3-type layered cathode materials for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2019,11(34):30894-30901.
|
21 |
LIU Y L,WANG D,LI H Y,et al.Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries[J].Journal of Materials Chemistry A,2022,10(8):3869-3888.
|
22 |
WANG C C,LIU L J,ZHAO S,et al.Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery[J].Nature Communications,2021,12(1):2256.
|
23 |
LI T,ZHANG Y Y,ZHANG Y S,et al.A highly stable high-energy layered oxide cathode for rechargeable sodium ion batteries[J].Journal of Materials Chemistry A,2024,12(31):20348-20353.
|
24 |
LIU J,HUANG W Y,LIU R B,et al.Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries[J].Advanced Functional Materials,2024,34(24):2315437.
|
25 |
TANG Y L,ZHANG Q H,ZUO W H,et al.Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries[J].Nature Sustainability,2024,7:348-359.
|
26 |
WANG Q D,ZHOU D,ZHAO C L,et al.Fast-charge high-voltage layered cathodes for sodium-ion batteries[J].Nature Sustainability,2024,7:338-347.
|
27 |
HOUSE R A,MAITRA U,PÉREZ-OSORIO M A,et al.Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J].Nature,2020,577(7791):502-508.
|
28 |
YODA Y,KUBOTA K,KUROKI K,et al.Elucidating influence of Mg- and Cu-doping on electrochemical properties of O3-Nax[Fe,Mn]O2 for Na-ion batteries[J].Small,2020,16(50):e2006483.
|
29 |
SHEVCHENKO V A,KOMAYKO A I,SIVENKOVA E V,et al.Effect of Ni/Fe/Mn ratio on electrochemical properties of the O3-NaNi1- x-yFexMnyO2(0.25≤x,y≤0.75)cathode materials for Na-ion batteries[J].Journal of Power Sources,2024,596:234092.
|
30 |
MASQUELIER C,CROGUENNEC L.Polyanionic (phosphates,silicates,sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J].Chemical Reviews,2013,113(8):6552-6591.
|
31 |
GAN T T,YUAN J S,CHEN F,et al.Continuous flow electrochemical synthesis of olivine-structured NaFePO4 cathode material for sodium-ion batteries from recycle LiFePO4[J].Small,2024,20(32):e2401489.
|
32 |
JIAN Z L,YUAN C C,HAN W Z,et al.Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries[J].Advanced Functional Materials,2014,24(27):4265-4272.
|
33 |
JIAN Z L,HAN W Z,LU X,et al.Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J].Advanced Energy Materials,2013,3(2):156-160.
|
34 |
PANDIT B,SOUGRATI M T,FRAISSE B,et al.Exploration of a Na3V2(PO4)3/C -Pb full cell Na-ion prototype[J].Nano Energy,2022,95:107010.
|
35 |
LI W,LI J P,LI R R,et al.Study on sodium storage properties of manganese-doped sodium vanadium phosphate cathode materials[J].Battery Energy,2023,2(2):20220042.
|
36 |
FANG Y J,XIAO L F,AI X P,et al.Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J].Advanced Materials,2015,27(39):5895-5900.
|
37 |
ZHANG B W,MA K X,LV X,et al.Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries:Synthesis,modifications,and perspectives[J].Journal of Alloys and Compounds,2021,867:159060.
|
38 |
SHAO Y R,QIAN Y J,ZHANG T S,et al.Doping modification of sodium superionic conductor Na3V2(PO4)3 cathodes for sodium-ion batteries:A mini-review[J].Inorganic Chemistry Frontiers,2024,11:4552-4567.
|
39 |
LIU X,GONG J,WEI X J,et al.MoO 4 2 - mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries[J].Journal of Colloid and Interface Science,2022,606:1897-1905.
|
40 |
ZHOU H,CAO Z T,ZHOU Y F,et al.Unlocking rapid and robust sodium storage of fluorophosphate cathode via multivalent anion substitution[J].Nano Energy,2023,114:108604.
|
41 |
ARAGÓN M J,LAVELA P,ORTIZ G F,et al.On the effect of Silicon substitution in Na3V2(PO4)3 on the electrochemical behavior as cathode for sodium-ion batteries[J].ChemElectroChem,2017,5(2):367-374.
|
42 |
XU L,GUO Y,YE D B,et al.Boosting the operation stability of sodium-rich vanadium manganese-based NASICON phosphate as a cathode material for Na-ion batteries by Zn pinning effect[J].Powder Technology,2024,434:119335.
|
43 |
LI X R,CHEN C,YANG J,et al.Zn-doping effects of Na-rich Na3+ xV2- xZnx(PO4)3/C cathodes for Na-ion batteries:Lattice distortion induced by doping site and enhanced electrochemical performance[J].Journal of Colloid and Interface Science,2022,616:246-252.
|
44 |
ZHU L,WANG M M,XIANG S,et al.A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries[J].Advanced Energy Materials,2023,13:2302046.
|
45 |
GU Z Y,GUO J Z,CAO J M,et al.An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J].Advanced Materials,2022,34(14):2110108.
|
46 |
CONG J,LUO S H,LI P Y,et al.Stable cycling performance of lituium-doping Na3- xLixV2(PO4)3/C (0 ≤ x ≤ 0.4) cathode materials by Na-site manipulation strategy[J].Applied Surface Science,2024,643:158646.
|
47 |
王兴宇,王垣衡,闫佳昕,等.铁源前驱体对钠离子电池材料Na2FeP2O7/C的影响[J].电池,2024,54(3):309-314.
|
|
WANG X Y,WANG Y H,YAN J X,et al.Effect of iron source precursor on sodium-ion battery material Na2FeP2O7/C[J].Battery Bimonthly,2024,54(3):309-314.
|
48 |
AHSAN Z,CAI Z F,WANG S,et al.Recent development of phosphate based polyanion cathode materials for sodium-ion batteries[J].Advanced Energy Materials,14(27):2400373.
|
49 |
BARPANDA P,YE T,NISHIMURA S I,et al.Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J].Electrochemistry Communications,2012,24:116-119.
|
50 |
WANG J,ZENG W H,ZHU J W,et al.Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode[J].Nano Energy,2023,116:108822.
|
51 |
XIN Y H,WANG Y S,CHEN B R,et al.Off-stoichiometry of sodium iron pyrophosphate as cathode materials for sodium-ion batteries with superior cycling stability[J].ACS Applied Materials & Interfaces,2024,16(28):36509-36518.
|
52 |
XU C L,ZHOU L,GAO T,et al.Development of high-performance iron-based phosphate cathodes toward practical Na-ion batteries[J].Journal of the American Chemical Society,2024,146(14):9819-9827.
|
53 |
BARPANDA P,OYAMA G,LING C D,et al.Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries[J].Chemistry of Materials,2014,26(3):1297-1299.
|
54 |
BARPANDA P,OYAMA G,NISHIMURA S I,et al.A 3.8 V earth-abundant sodium battery electrode[J].Nature Communications,2014,5(1):4358.
|
55 |
OYAMA G,NISHIMURA S I,SUZUKI Y,et al.Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2 xFe2- x(SO4)3 as an advanced sodium battery cathode material[J].ChemElectroChem,2015,2(7):1019-1023.
|
56 |
ZHANG J Y,YAN Y L,WANG X,et al.Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes[J].Nature Communications,2023,14:3701.
|
57 |
YU T T,LIN B,LI Q F,et al.First exploration of freestanding and flexible Na2+2 xFe2- x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries[J].Physical Chemistry Chemical Physics,2016,18(38):26933-26941.
|
58 |
DWIBEDI D,LING C D,ARAUJO R B,et al.Ionothermal synthesis of high-voltage alluaudite Na2+2 xFe2- x(SO4)3 sodium insertion compound:Structural,electronic,and magnetic insights[J].ACS Applied Materials & Interfaces,2016,8(11):6982-6991.
|
59 |
YAO G,ZHANG X X,YAN Y L,et al.Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries[J].Journal of Energy Chemistry,2020,50:387-394.
|
60 |
WANG J W,HOTELING G,SHEPARD R,et al.Reaction mechanism of Na-ion deintercalation in Na2CoSiO4[J].The Journal of Physical Chemistry C,2022,126(40):16983-16992.
|
61 |
JIN T,LI H X,ZHU K J,et al.Polyanion-type cathode materials for sodium-ion batteries[J].Chemical Society Reviews,2020,49(8):2342-2377.
|
62 |
RANGASAMY V S,THAYUMANASUNDARAM S,LOCQUET J P.Solvothermal synthesis and electrochemical properties of Na2CoSiO4 and Na2CoSiO4/carbon nanotube cathode materials for sodium-ion batteries[J].Electrochimica Acta,2018,276:102-110.
|
63 |
LAW M,RAMAR V,BALAYA P.Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery[J].Journal of Power Sources,2017,359:277-284.
|
64 |
STRAUSS F,ROUSSE G,SOUGRATI M T,et al.Synthesis,structure,and electrochemical properties of Na3MB5O10(M=Fe,Co)containing M2+in tetrahedral coordination[J].Inorganic Chemistry,2016,55(24):12775-12782.
|
65 |
赵文杰.氟磷酸钒钠正极材料的合成及改性[D].长沙:中南大学,2023.
|
66 |
ZHANG L M,HE X D,WANG S,et al.Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2021,13(22):25972-25980.
|
67 |
QIAN J F,WU C,CAO Y L,et al.Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J].Advanced Energy Materials,2018,8(17):1702619.
|
68 |
REHMAN R,PENG J,YI H C,et al.Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries[J].RSC Advances,2020,10(45):27033-27041.
|
69 |
SIMONOV A,DE BAERDEMAEKER T,BOSTRÖM H L B,et al.Hidden diversity of vacancy networks in Prussian blue analogues[J].Nature,2020,578(7794):256-260.
|
70 |
杨志豪,李昌明,吴智谋,等.普鲁士蓝类钠离子正极材料的制备及改性研究进展[J].材料研究与应用,2024,18(2):195-206.
|
|
YANG Z H,LI C M,WU Z M,et al.Progress in preparation and modification of Prussian blue analogues for sodium-ion cathode materials[J].Materials Research and Application,2024,18(2):195-206.
|
71 |
LI Q Y,XU C M,LIANG Y R,et al.Reforming magnet waste to Prussian blue for sustainable sodium-ion batteries[J].ACS Applied Materials & Interfaces,2022,14(42):47747-47757.
|
72 |
LIU Y J,FAN S W,GAO Y,et al.Isostructural synthesis of iron-based Prussian blue analogs for sodium-ion batteries[J].Small,2023,19(43):2302687.
|
73 |
闫昶秀.铁基普鲁士蓝材料的制备及储钠性质研究[D].武汉:武汉大学,2022.
|
74 |
XU Z,SUN Y,XIE J,et al.High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J].Materials Today Sustainability,2022,18:100113.
|
75 |
王壮,张威,蒋妍,等.锰基普鲁士蓝正极材料掺杂Fe2+的储钠性能研究[J].湖北工业大学学报,2022,37(4):71-74.
|
|
WANG Z,ZHANG W,JIANG Y,et al.Study on sodium storage properties of manganese based prussian blue cathode materials doped with Fe2+[J].Journal of Hubei University of Technology,2022,37(4):71-74.
|
76 |
刘航瑞.镍基普鲁士蓝材料的可控制备及储钠性能研究[D].秦皇岛:燕山大学,2022.
|