石油化工高等学校学报 ›› 2024, Vol. 37 ›› Issue (3): 17-24.DOI: 10.12422/j.issn.1006-396X.2024.03.003
收稿日期:
2022-05-26
修回日期:
2024-04-28
出版日期:
2024-06-25
发布日期:
2024-06-18
通讯作者:
王海彦
作者简介:
唐伟建(1996-),男,硕士研究生,从事清洁燃料生产新工艺方面的研究;E-mail:1358832485@qq.com。
基金资助:
Weijian TANG(), Yujia WANG, Na SUN, Haiyan WANG()
Received:
2022-05-26
Revised:
2024-04-28
Published:
2024-06-25
Online:
2024-06-18
Contact:
Haiyan WANG
摘要:
环己基苯(CHB)是一种重要的化学中间体,具有特殊的物理化学性能,可用作锂离子电池的电解质添加剂,少量添加即可防止过度充电并确保电池的循环性能和寿命;CHB在用于过氧化反应合成苯酚中时可生成另一种重要的有机化工产品——环己酮。介绍了3种合成CHB方法中使用的催化剂,这3种方法包括苯与烷基化试剂的傅克烷基化反应、联苯选择性加氢反应以及苯加氢烷基化反应;指出了开发兼具高酸量和高介孔体积的沸石分子筛催化剂是苯加氢烷基化制备CHB的关键。
中图分类号:
唐伟建, 王钰佳, 孙娜, 王海彦. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24.
Weijian TANG, Yujia WANG, Na SUN, Haiyan WANG. Research Progress of Catalysts for Cyclohexylbenzene Synthesis Based on Different Routes[J]. Journal of Petrochemical Universities, 2024, 37(3): 17-24.
分子筛 | SBET/(m2·g-1) | Smicro/(m2·g-1) | Smeso/(m2·g-1) | Vtotle/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso/(cm3·g-1) |
---|---|---|---|---|---|---|
HZSM | 325 | 26 | 300 | 0.173 | 0.034 | 0.139 |
H-IM-5 | 286 | 56 | 229 | 0.286 | 0.180 | 0.106 |
H-RZM | 531 | 44 | 487 | 0.314 | 0.084 | 0.230 |
BETA | 529 | 104 | 425 | 0.458 | 0.262 | 0.196 |
HMCM-49 | 448 | 82 | 366 | 0.607 | 0.540 | 0.167 |
HY | 653 | 33 | 620 | 0.354 | 0.068 | 0.286 |
表 1 不同分子筛的织构性质[48][
Table 1 Texture properties of different molecular sieves[48]
分子筛 | SBET/(m2·g-1) | Smicro/(m2·g-1) | Smeso/(m2·g-1) | Vtotle/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso/(cm3·g-1) |
---|---|---|---|---|---|---|
HZSM | 325 | 26 | 300 | 0.173 | 0.034 | 0.139 |
H-IM-5 | 286 | 56 | 229 | 0.286 | 0.180 | 0.106 |
H-RZM | 531 | 44 | 487 | 0.314 | 0.084 | 0.230 |
BETA | 529 | 104 | 425 | 0.458 | 0.262 | 0.196 |
HMCM-49 | 448 | 82 | 366 | 0.607 | 0.540 | 0.167 |
HY | 653 | 33 | 620 | 0.354 | 0.068 | 0.286 |
分子筛 | 转化率/% | 选择性/% | |||||
---|---|---|---|---|---|---|---|
环己基苯 | 双环己基苯 | 环己烷 | 甲基环戊烷 | 甲基环戊基苯 | 其他 | ||
Pd/HZSM-5 | 15.40 | 43.49 | 9.39 | 46.55 | 0.21 | 0.31 | 0.05 |
Pd/H-IM-5 | 13.73 | 9.79 | 0.70 | 87.91 | 0.80 | 0.80 | 0.03 |
Pd/H-RZM | 12.45 | 16.47 | 2.01 | 81.20 | 0 | 0.16 | 0.16 |
Pd/HBETAAA | 36.61 | 62.85 | 28.27 | 5.76 | 0.04 | 1.37 | 1.71 |
Pd/HMCM-49 | 34.69 | 71.55 | 20.06 | 6.49 | 0.03 | 0.32 | 1.55 |
Pd/HY | 48.63 | 82.94 | 14.97 | 0.64 | 0.06 | 0.35 | 1.04 |
表 2 负载Pd的不同分子筛催化剂上苯加氢烷基化性能[48]
Table 2 Performance of benzene hydrogenation alkylation on different molecular sieve catalysts loaded with palladium[48]
分子筛 | 转化率/% | 选择性/% | |||||
---|---|---|---|---|---|---|---|
环己基苯 | 双环己基苯 | 环己烷 | 甲基环戊烷 | 甲基环戊基苯 | 其他 | ||
Pd/HZSM-5 | 15.40 | 43.49 | 9.39 | 46.55 | 0.21 | 0.31 | 0.05 |
Pd/H-IM-5 | 13.73 | 9.79 | 0.70 | 87.91 | 0.80 | 0.80 | 0.03 |
Pd/H-RZM | 12.45 | 16.47 | 2.01 | 81.20 | 0 | 0.16 | 0.16 |
Pd/HBETAAA | 36.61 | 62.85 | 28.27 | 5.76 | 0.04 | 1.37 | 1.71 |
Pd/HMCM-49 | 34.69 | 71.55 | 20.06 | 6.49 | 0.03 | 0.32 | 1.55 |
Pd/HY | 48.63 | 82.94 | 14.97 | 0.64 | 0.06 | 0.35 | 1.04 |
图8 通过不同浓度NaOH溶液碱处理的方法制备的Hβ分子筛的扫描电镜图[49]
Fig.8 SEM images of Hβ molecular sieve after alkali treatment with different concentrations of NaOH solution[49]
1 | SINGHAL S, AGARWAL S, ARORA S, et al. Solid acids: Potential catalysts for alkene-isoalkane alkylation[J]. Catalysis Science & Technology, 2017, 7(24): 5810-5819. |
2 | 夏玥穡, 温朗友, 纪刚, 等. 环己基苯氧化-分解联产苯酚和环己酮技术的研究进展Ⅱ. 环己基苯氧化-分解制备苯酚和环己酮[J]. 石油化工, 2016, 45(7): 769-775. |
XIA Y S,WEN L Y,JI G, et al.Progresses in synthesis of phenol and cyclohexanone by catalytic oxidation-decomposition of cyclohexylbenzene Ⅱ.Cyclohexylbenzene oxidation-decomposition to phenol and cyclohexanone[J].Petrochemical Tech-nology,2016,45(7):769-775. | |
3 | KANG K S, SEONG M J, OH S H, et al. Surface-modified Ni-rich layered oxide cathode via thermal treatment of poly (vinylidene fluoride) for lithium-ion batteries[J]. Bulletin of the Korean Chemical Society, 2020, 41(11): 1107-1113. |
4 | MENG F F, DONG L H, MENG W, et al. High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene[J]. Catalysis Letters, 2022, 152(3): 745-754. |
5 | 方云进, 郭欢欢. 离子液体催化苯与环己烯的烷基化合成环己基苯[J]. 精细化工, 2008, 25(4): 405-408. |
FANG Y J, GUO H H. Synthesis of cyclohexylbenzene by alkylation of benzene with cyclohexene catalyzed by ionic liquid[J]. Fine Chemicals, 2008, 25(4): 405-408. | |
6 | 吴盼盼, 金顶峰, 张明, 等. 傅克法合成二苯甲烷的研究进展[J]. 化学试剂, 2016, 38(7): 631-636. |
WU P P, JIN D F, ZHANG M, et al. Progress on synthesis of diphenymethane by friedel-crafts method[J]. Chemical Reagents, 2016, 38(7): 631-636. | |
7 | 刘晓林. 傅-克烷基化反应催化剂的研究及烷基化反应产物的应用[D]. 兰州: 兰州交通大学, 2017. |
8 | 先雪峰, 周刚. 苯基环己烷的制备方法: CN200510130526.2[P]. 2005-12-13. |
9 | 黄琴琴, 王德举, 刘仲能, 等. 环己基苯合成用催化剂: CN201410575137.X[P]. 2014-10-24. |
10 | 王高伟, 魏一伦, 方华, 等. 液相烷基化制环己基苯的方法: CN201510586153.3[P]. 2015-09-15. |
11 | 裘俊峰. 环己基苯液相氧化工艺优化及动力学研究[D]. 上海: 华东理工大学, 2016. |
12 | 周刚. 苯基环己烷的制备方法: CN200610063622.4[P]. 2006-12-31. |
13 | 王闻年, 王高伟, 高焕新, 等. 环己基苯的合成及其催化剂研究进展[J]. 化工进展, 2019, 38(1): 324-333. |
WANG W N, WANG G W, GAO H X, et al. Progress in synthesis of cyclohexylbenzene and the catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 324-333. | |
14 | YANG Y F, MA J Y, Wu J Y, et al. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene[J]. Chinese Journal of Chemical Eniginerring, 2022, 44: 124-130. |
15 | 段晶, 王文浩, 周集义, 等. Friedel-Crafts反应催化剂的研究进展[J]. 化学推进剂与高分子材料, 2009, 7(5): 15-21. |
DUAN J, WANG W H, ZHOU J Y, et al. Research progress of catalysts in friedel-crafts reaction[J]. Chemical Propellants & Polymeric Materials, 2009, 7(5): 15-21. | |
16 | GE G Y, ZHOU Y M, SHENG X L, et al. The study of industrializable ionic liquid catalysts for long‐chain alkenes friedel–crafts alkylation[J]. Applied Organometallic Chemistry, 2020, 34(10): e5878. |
17 | 沈江南, 阮慧敏, 吴东柱, 等. 离子液体支撑液膜的研究及应用进展[J]. 化工进展, 2009, 28(12): 2092-2098. |
SHEN J N, RUAN H M, WU D Z, et al. Progress of supported liquid membrane with ionic liquids[J]. Chemical Industry and Engineering Progress, 2009, 28(12): 2092-2098. | |
18 | 高岩. 盐酸三乙胺离子液体催化苯和环己烯合成环己基苯[D]. 郑州: 郑州大学, 2016. |
19 | 王迎宾, 李建伟, 淳宏, 等. 室温离子液体催化苯与环己烯的烷基化反应[J]. 精细石油化工进展, 2008, 9(10): 25-28. |
WANG Y B, LI J W, CHUN H, et al. Alkylation of benzene and cyclohexene catalyzed by room-temperature ionic liquid[J]. Advances in Fine Petrochemicals, 2008, 9(10): 25-28. | |
20 | 何建玲. 离子液体催化苯与环己烯的Friedel-Crafts烷基化反应[J]. 光谱实验室, 2011, 28(5): 2480-2483. |
HE J L. Friedel-crafts alkylation reaction of benzene with cyclohexene by ionic liquids[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(5): 2480-2483. | |
21 | 方云进, 郭欢欢. 环己基苯的制备方法: CN200810032620.8[P]. 2008-01-14. |
22 | XU M Q, XING L D, LI W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. Journal of Power Sources, 2008, 184(2): 427-431. |
23 | 曹鹏福,赵沪春,闫占冬,等.高温高压下离子液体对原油中沥青质沉淀的抑制效果评价[J].油田化学,2023,40(2):297-304. |
CAO P F,ZHAO H C,YAN Z D,et al.Inhibition effect evaluation of ionic liquid on asphaltene precipitation in crude oil under high temperature and pressure[J].Oilfield Chemistry,2023,40(2):297-304. | |
24 | 杜一萌, 刘明星, 杨艺, 等. 新型氨基酸型离子液体的制备及性能研究[J]. 当代化工, 2022, 51(4): 795-799. |
DU Y M, LIU M X, YANG Y, et al. Study on the preparation and performance of a new type of amino acid ionic liquid[J]. Contemporary Chemical Industry, 2022, 51(4): 795-799. | |
25 | CHERNOVA M M, MINAYEV P P, MARTYNENKO Y A, et al. An effect of a support nature and active phase morphology on catalytic properties of Ni-containing catalysts in hydrogenation of biphenyl[J]. Russian Journal of Applied Chemistry, 2018, 91(10): 1701-1710. |
26 | TANG G M, XI Y R, SUN W C, et al. Syntheses, crystal structures, luminescence, hirshfeld surface analyses and thermal properties of biphenyl carbazole derivatives[J]. Journal of Molecular Structure, 2021, 1245: 131018. |
27 | KALENCHUK A N, KOKLIN A E, BOGDAN V I, et al. Hydrogenation of naphthalene and anthracene on Pt/C catalysts[J]. Russian Chemical Bulletin, 2018, 67(8): 1406-1411. |
28 | 刘成运. 多环芳烃的选择性催化加氢研究[D]. 大连: 大连理工大学, 2013. |
29 | 袁履冰, 丁勇. 计算共振能的一个新的经验方法[J]. 化学研究与应用, 1991(4): 19-27. |
YUAN L B, DING Y. A new empirical method for calculation of resonance energy[J]. Chemical Research and Application, 1991(4): 19-27. | |
30 | 吕连海, 荣泽明, 胡爽, 等. 一种联苯高选择性催化加氢制备环己基苯的方法: CN200610045625.5[P]. 2006-01-06. |
31 | 荣泽明. 骤冷骨架Ni和纳米Pt/C催化芳环和硝基加氢的研究[D]. 大连: 大连理工大学, 2010. |
32 | 刘星. 骨架镍与负载镍催化愈创木酚加氢的研究[D]. 大连: 大连理工大学, 2018. |
33 | 孙亮. 对苯二酚和联苯选择性催化加氢的研究[D]. 大连: 大连理工大学, 2013. |
34 | LI W, ZHAO Z P, LI J P, et al. Effects of Ni-loading on the performance of Ni/SiO2 catalysts for the highly selective hydrogenation of biphenyl to cyclohexylbenzene[J]. ChemistrySelect, 2021, 6(16): 3897-3902. |
35 | ZHANG Y J, YANG Y S, HOU Q D, et al. Metal–acid bifunctional catalysts toward tandem reaction: One-step hydroalkylation of benzene to cyclohexylbenzene[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 31998-32008. |
36 | FAHY J, TRIMM D L, COOKSON D J. Four component catalysis for the hydroalkylation of benzene to cyclohexyl benzene[J]. Applied Catalysis A: General, 2001, 211(2): 259-268. |
37 | MENG F F, DING Y S, MENG W, et al. Modification of molecular sieves USY and their application in the alkylation reaction of benzene with cyclohexene[J]. ChemistrySelect, 2020, 5(29): 8935-8941. |
38 | KRALIK M, VALLUSOVA Z, LALUCH J, et al. Comparsion of ruthenium catalysis supported on beta and mordenite in the hydrocycloalkylation of benzene[J]. Petroleum & Coal, 2008, 50(1): 44-51. |
39 | SLAUGH L H, LEONARD J A. Hydrodimerization of benzene to phenylcyclohexane over supported transition metal catalysts[J]. Journal of Catalysis, 1969, 13(4): 385-396. |
40 | YANG Y F, YOU Y, WU J Y, et al. Phosphotungstic acid encapsulated in USY zeolite as catalysts for the synthesis of cyclohexylbenzene[J]. Journal of the Iranian Chemical Society, 2021, 18(3): 573-580. |
41 | IVANOVA I I, BORODINA I B, PONOMAREVA O A, et al. Hydroalkylation of benzene and ethylbenzene over Ru- and Ni- containing zeolite catalysts – novel catalytic route for ethylcyclobenzene synthesis[J]. Studies in Surface Science & Catalysis, 2007, 170: 1228-1235. |
42 | HUANG J Y, LI Z Q, YANG J Y, et al. Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation[J]. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326-2336. |
43 | 董帅帅, 单玉华, 徐文杰, 等. 苯加氢烷基化合成环己基苯催化剂研究[J]. 现代化工, 2013, 33(8): 73-77. |
DONG S S, SHAN Y H, XU W J, et al. Study on catalysts for synthesis of cyclohexylbenzene by hydroalkylation of benzene[J]. Modern Chemical Industry, 2013, 33(8): 73-77. | |
44 | 曹鹰, 单玉华, 司坤坤, 等. 苯加氢烷基化制环己基苯催化剂的制备与工艺条件的考察[J]. 石油化工, 2015, 44(2): 175-180. |
CAO Y, SHAN Y H, SI K K, et al. Catalyst and process of benzene hydroalkylation to cyclohexylbenzene[J]. Petrochemical Technology, 2015, 44(2): 175-180. | |
45 | 郑一天, 单玉华, 冯洋洋, 等. 苯加氢烷基化制备环己基苯催化剂的研制及其应用[J]. 精细化工, 2017, 34(10): 1161-1168. |
ZHENG Y T, SHAN Y H, FENG Y Y, et al. Preparation and application of catalysts for hydroalkylation of benzene to cyclohexylbenzene[J]. Fine Chemicals, 2017, 34(10): 1161-1168. | |
46 | 石文路, 乔庆东. 苯与烯烃烷基化催化剂的研究进展[J]. 现代化工, 2017, 37(12): 54-58. |
SHI W L, QIAO Q D. Study progress of catalysts for alkylation reactions of benzene and olefins[J]. Modern Chemical Industry, 2017, 37(12): 54-58. | |
47 | 王闻年, 王高伟, 高焕新, 等. Y分子筛介微孔结构与酸性对苯加氢烷基化反应的影响[J]. 化学反应工程与工艺, 2018, 34(3): 243-253. |
WANG W N, WANG G W, GAO H X, et al. Effect of meso-micro-pore structure and acidity of zeolite Y on hydroalkylation of benzene[J]. Chemical Reaction Engineering and Technology, 2018, 34(3): 243-253. | |
48 | 纪刚, 温朗友, 郜亮, 等. 不同分子筛负载Pd催化剂催化苯加氢烷基化制备环己基苯[J]. 石油学报(石油加工), 2020, 36(1): 70-77. |
JI G, WEN L Y, GAO L, et al. Benzene hydroalkylation to cyclohexylbenzene over different zeolites supported Pd catalysts[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2020, 36(1): 70-77. | |
49 | 杨洋, 孙娜, 王雪, 等. 梯度孔Hβ的制备及其催化苯加氢烷基化性能[J]. 辽宁石油化工大学学报, 2022, 42(1): 7-12. |
YANG Y, SUN N, WANG X, et al. Preparation of hierarchical porous Hβ and its catalytic performance in benzene hydroalkylation[J]. Journal of Liaoning Petroleumchemical University, 2022, 42(1): 7-12. | |
50 | 王维, 单玉华, 刘平, 等. 硅铝源对Ni-Pd-La/Hβ催化苯制环己基苯的影响[J]. 精细化工, 2021, 38(9): 1853-1859. |
WANG W, SHAN Y H, LIU P, et al. Effection of Si and Al sources on hydroalkylation of benzene to cyclohexylbenzene over Ni-Pd-La/Hβ[J]. Fine Chemicals, 2021, 38(9): 1853-1859. | |
51 | SHI J, WANG Y D, YANG W M, et al. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chemical Society Reviews, 2015, 44(24): 8877-8903. |
52 | 惠宇, 刘金玲, 秦玉才, 等. 柠檬酸改性Hβ分子筛酸性中心的调变与解析[J]. 石油化工高等学校学报, 2020, 33(3): 14-20. |
HUI Y, LIU J L, QIN Y C, et al. Discrimination and regulation of the acidic sites of Hβ zeolite with citric acid treatment[J]. Journal of Petrochemical Universities, 2020, 33(3): 14-20. | |
53 | 王园园, 宋华, 孙兴龙, 等. Hβ分子筛的磷改性及其催化甲苯和叔丁醇烷基化反应性能[J]. 东北石油大学学报, 2020, 44(4): 85-90. |
WANG Y Y, SONG H, SUN X L, et al. Phosphprus modified Hβ zeolites and the catalytic perpormance for alkylation of toluene with tert-butylalcohol[J]. Journal of Northeast Petroleum University, 2020, 44(4): 85-90. | |
54 | 王京, 刘中勋, 周震寰, 等. 苯与合成气烃化催化剂的改进研究[J]. 石油炼制与化工, 2022, 53(4): 24-29. |
WANG J, LIU Z X, ZHOU Z H, et al. Study on modified catalyst of benzene alkylation reaction with syngas[J]. Petroleum Processing and Petrochemicals, 2022, 53(4): 24-29. | |
55 | 高杭, 秦波, 杜艳泽, 等. Y-Beta复合分子筛的甲苯甲醇烷基化性能研究[J]. 当代化工, 2018, 47(3): 494-497. |
GAO H, QIN B, DU Y Z, et al. Catalytic activity of composite zeolites Y-Beta for alkylation of toluene with methanol[J]. Contemporary Chemical Industry, 2018, 47(3): 494-497. |
[1] | 祝凯, 杨兰, 刘瑞娟, 安晓强. 非均相臭氧催化剂及其在工业废水处理中的应用与进展[J]. 石油化工高等学校学报, 2024, 37(5): 1-10. |
[2] | 赵明明, 娄洺源, 朴茜琳, 迟昊天, 张海娟. 助剂Ga对Pt基催化剂脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(5): 46-55. |
[3] | 韩飞飞, 焦建豪, 田祥臣, 杨野, 秦玉才, 宋丽娟. Sn引入方式对Al2O3负载Pt基催化剂丙烷脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(4): 49-56. |
[4] | 王焕, 熊晓云, 郑云锋, 孙祥博, 关慧敏, 李强, 宋丽娟. FCC催化剂传质性能与孔结构和酸性的关联性探究[J]. 石油化工高等学校学报, 2024, 37(3): 58-65. |
[5] | 刘世佳, 何凯, 毕研峰, 宋丽娟. γ⁃Al2O3载体的形貌调控及其对丙烷脱氢催化剂的影响综述[J]. 石油化工高等学校学报, 2024, 37(2): 31-41. |
[6] | 李声笛, 肖海成, 吴志杰. 费托合成Co基催化剂的研究进展[J]. 石油化工高等学校学报, 2024, 37(1): 34-42. |
[7] | 黄旭君, 宋永一, 于洋, 丁巍, 张舒冬, 蔡海乐, 马锐. 石油焦应用及脱硫技术进展[J]. 石油化工高等学校学报, 2023, 36(5): 15-23. |
[8] | 张景威, 惠宇, 杨野, 李强, 秦玉才, 宋丽娟, 李晟闻. B⁃MFI分子筛可控合成及丁烯双键异构化应用[J]. 石油化工高等学校学报, 2023, 36(5): 31-37. |
[9] | 陈晓雨, 王春蓉, 孙京, 王景芸, 陈阳, 周明东. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44. |
[10] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[11] | 刘嘉敏, 越婷婷, 常迎, 郭少红, 贾晶春, 贾美林. CO2RR稀土基催化剂的研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 1-12. |
[12] | 宋学实, 曲微丽, 赵磊, 王振波. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25-33. |
[13] | 康津铭, 焦建豪, 秦玉才, 杨野, 王焕, 宋丽娟. Pt0.5⁃Snx/γ⁃Al2O3催化剂对丙烷脱氢反应性能的影响[J]. 石油化工高等学校学报, 2023, 36(4): 34-39. |
[14] | 李愉景, 王贺, 陈阳, 李蕾. Co⁃NC⁃900催化氧化烯烃C=C断裂合成酯[J]. 石油化工高等学校学报, 2023, 36(4): 40-46. |
[15] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发