| 1 | 
																						 
											 华亚妮,冯少广,党欣悦,等.CO2电催化还原产合成气研究进展[J].化工进展,2022,41(3):1224⁃1240.
											 											 | 
										
																													
																						 | 
																						 
											 Hua Y N,Feng S G,Dang X Y,et al.Research progress of CO2 electrocatalytic reduction to syngas [J].Chemical Industry and Engineering Progress,2022,41(3):1224⁃1240.
											 											 | 
										
																													
																						| 2 | 
																						 
											 程喆,陈鹏华,满小,等.CeO2复合碳基催化剂的氧还原性能影响因素的探究[J].石油化工高等学校学报,2022,35(2):29⁃36.
											 											 | 
										
																													
																						 | 
																						 
											 Cheng Z,Chen P H,Man X,et al.Investigation of factors influencing the oxygen reduction performance of CeO2⁃modified carbon⁃based catalysts[J].Journal of Petrochemical Universities,2022,35(2):29⁃36.
											 											 | 
										
																													
																						| 3 | 
																						 
											 陈凯,张建亮,杨德伟,等.咪唑类离子液体催化四氢噻吩氧化脱硫机理[J].油田化学,2021,38(4):714⁃720.
											 											 | 
										
																													
																						 | 
																						 
											 Chen K,Zhang J L,Yang D W, et al.Mechanism of oxidative desulfurization of tetrahydrothiophene catalyzed by imidazole ionic liquid[J].Oilfield Chemistry,2021,38(4):714⁃720.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Gao Z,Li J,Zhang Z,et al.Recent advances in carbon⁃based materials for electrochemical CO2 reduction reaction[J].Chinese Chemical Letters,2022,33(5):2270⁃2280.
											 											 | 
										
																													
																						| 5 | 
																						 
											 董灵玉,葛睿,原亚飞,等.多孔炭基二氧化碳电催化材料研究进展[J].化工学报,2020,71(6):2492⁃2509.
											 											 | 
										
																													
																						 | 
																						 
											 Dong L Y,Ge R,Yuan Y F,et al.Recent advances in porous carbon⁃based electrocatalysts for carbon dioxide reduction[J].CIESC Journal,2020,71(6):2492⁃2509.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Zhong L,Song L,Sun M Z,et al.Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn⁃Ln dual atomic catalysts[J].Science Advances,2021,7(47):eabl4915.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Xiong B,Yang Y,Liu J,et al.Electrochemical conversion of CO2 to syngas over Cu⁃M(M=Cd,Zn,Ni,Ag,and Pd) bimetal catalysts[J].Fuel,2021,304(31):121341.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Ge R,Dong L Y,Hu X,et al.Intensified coupled electrolysis of CO2 and brine over electrocatalysts with ordered mesoporous transport channels[J].Chemical Engineering Journal,2022,438:135500.
											 											 | 
										
																													
																						| 9 | 
																						 
											 周伟,成康,张庆红,等.合成气转化中的接力催化[J].科学通报,2021,66(10):1157⁃1169.
											 											 | 
										
																													
																						 | 
																						 
											 Zhou W,Cheng K,Zhang Q H,et al.Relay catalysis in the conversion of syngas[J].Chinese Science Bulletin,2021,66(10):1157⁃1169.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Guo S,Zhao S,Wu X,et al.A Co3O4⁃CDots⁃C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas[J].Nature Communications,2017,8(1):1⁃9.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Ross M B,Dinh C T,Li Y,et al.Tunable Cu enrichment enables designer syngas electrosynthesis from CO2[J].Journal of the American Chemical Society,2017,139(27):9359⁃9363.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Sheng W,Kattel S,Yao S,et al.Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J].Energy & Environmental Science,2017,10(5):1180⁃1185.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Dong L Y,Hu X,Du Y Z,et al.Marked enhancement of electrocatalytic activities for gas⁃consuming reactions by bimodal mesopores[J].Journal of Materials Chemistry A,2021,9(33):17821⁃17829.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Wang T,Yang J,Chen J,et al.Nitrogen⁃doped carbon nanotube⁃encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction[J].Chinese Chemical Letters,2020,31(6):1438⁃1442.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Sun T,Mitchell S,Li J,et al.Design of local atomic environments in single‐atom electrocatalysts for renewable energy conversions[J].Advanced Materials,2021,33(5):e2003075.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Ju W,Bagger A,Hao G P,et al.Understanding activity and selectivity of metal⁃nitrogen⁃doped carbon catalysts for electrochemical reduction of CO2 [J].Nature Communications,2017,8(1):1⁃9.
											 											 | 
										
																													
																						| 17 | 
																						 
											 Pan F P,Deng W,Justiniano C,et al.Identification of champion transition metals centers in metal and nitrogen⁃codoped carbon catalysts for CO2 reduction[J].Applied Catalysis B:Environmental,2018,226:463⁃472.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Xiong B,Yang Y,Liu J,et al.Crystal orientation effects on the electrochemical conversion of CO2 to syngas over Cu⁃M(M= Ag,Ni,Zn,Cd,and Pd) bimetal catalysts[J].Applied Surface Science,2021,567:150839.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Yang X,Tat T,Libanori A,et al.Single⁃atom catalysts with bimetallic centers for high⁃performance electrochemical CO2 reduction[J].Materials Today,2021,45:54⁃61.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Beheshti M,Kakooei S,Ismail M C,et al.Investigation of CO2 electrochemical reduction to syngas on Zn/Ni⁃based electrocatalysts using the cyclic voltammetry method[J].Electrochimica Acta,2020,341:135976.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Delafontaine L,Murphy E,Guo S Y,et al.Synergistic electrocatalytic syngas production from carbon dioxide by Bi‐metallic atomically dispersed catalysts[J].ChemElectroChem,2022,9(17):e202200647.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Daiyan R,Chen R,Kumar P,et al.Tunable syngas production through CO2 electroreduction on cobalt⁃carbon composite electrocatalyst[J].ACS Applied Materials & Interfaces,2020,12(8):9307⁃9315.
											 											 | 
										
																													
																						| 23 | 
																						 
											 Xu C,Vasileff A,Jin B,et al.Graphene⁃encapsulated nickel⁃copper bimetallic nanoparticle catalysts for electrochemical reduction of CO2 to CO[J].Chemical Communications,2020,56(76):11275⁃11278. (编辑 闫玉玲)
											 											 |