1 |
孙旭, 王佳元, 李明权, 等. 无溶剂研磨法合成杂原子分子筛对费托合成产物调控的研究[J]. 应用化工, 2020, 49(S2): 82⁃90.
|
|
SUN X, WANG J Y, LI M Q, et al. Solvent⁃free synthesis method of heteroatom zeolite for tuning Fischer⁃Tropsch synthesis product distribution[J]. Applied Chemical Industry, 2020, 49(S2): 82⁃90.
|
2 |
张晓方, 冯留海, 卜亿峰, 等. 费托合成浆态床反应器结构与工程放大研究进展[J]. 石油化工高等学校学报, 2018, 31(5): 1⁃10.
|
|
ZHANG X F, FENG L H, BU Y F, et al. Development of Fischer⁃Tropsch slurry bubble column reactor on reactor structure and engineering scale⁃up[J]. Journal of Petrochemical Universities, 2018, 31(5): 1⁃10.
|
3 |
SUO Y J, YAO Y L, ZHANG Y S, et al. Recent advances in cobalt⁃based Fischer⁃Tropsch synthesis catalysts[J]. Journal of Industrial and Engineering Chemistry, 2022, 115: 92⁃119.
|
4 |
SAVOST'YANOV A P, YAKOVENKO R E, NAROCHNYI G B, et al. Industrial catalyst for the selective Fischer⁃Tropsch synthesis of long⁃chain hydrocarbons[J]. Kinetics and Catalysis, 2017, 58(1): 81⁃91.
|
5 |
于芹芹, 戴友芝, 张莉, 等. 非贵金属单原子催化剂的研究进展[J]. 化工环保, 2022, 42(2): 143⁃147.
|
|
YU Q Q, DAI Y Z, ZHANG L, et al. Research progress of non⁃noble metal single⁃atom catalysts[J]. Environmental Protection of Chemical Industry, 2022, 42(2): 143⁃147.
|
6 |
ZHANG R G, KANG L, LIU H X, et al. Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer⁃Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2020, 269: 118847.
|
7 |
SU H Y, ZHAO Y H, LIU J X, et al. First⁃principles study of structure sensitivity of chain growth and selectivity in Fischer⁃Tropsch synthesis using HCP cobalt catalysts[J]. Catalysis Science & Technology, 2017, 7(14): 2967⁃2977.
|
8 |
WANG J B, ZHANG X R, SUN Q, et al. Chain growth mechanism on bimetallic surfaces for higher alcohol synthesis from syngas[J]. Catalysis Communications, 2015, 61: 57⁃61.
|
9 |
ZHANG R G, WEN G X, ADIDHARMA H, et al. C2 oxygenate synthesis via Fischer⁃Tropsch synthesis on Co2C and Co/Co2C interface catalysts: How to control the catalyst crystal facet for optimal selectivity[J]. ACS Catalysis, 2017, 7(12): 8285⁃8295.
|
10 |
HOLMEN A, RADSTAKE P B, BEZEMER G L, et al. On the origin of the cobalt particle size effects in Fischer⁃Tropsch catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197⁃7203.
|
11 |
RALSTON W T, MELAET G, SAEPHAN T, et al. Evidence of structure sensitivity in the Fischer⁃Tropsch reaction on model cobalt nanoparticles by time⁃resolved chemical transient kinetics[J]. Angewandte Chemie International Edition, 2017, 56(26): 7415⁃7419.
|
12 |
王凯, 代惠, 李贝, 等. HCP⁃Co基费托合成催化剂的研究进展[J]. 石油化工, 2019, 48(9): 968⁃975.
|
|
WANG K, DAI H, LI B, et al. Research progress on HCP⁃Co⁃based catalyst for Fischer⁃Tropsch synthesis[J]. Petrochemical Technology, 2019, 48(9): 968⁃975.
|
13 |
LIU J X, WANG P, XU W, et al. Particle size and crystal phase effects in Fischer⁃Tropsch catalysts[J]. Engineering, 2017, 3(4): 467⁃476.
|
14 |
MAHMOOD R, MOHAMMAD⁃SAEED S, FLETCHER T H, et al. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer⁃Tropsch synthesis[J]. Chemical Reviews, 2020, 120(10): 4455⁃45333.
|
15 |
BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt particle size effects in the Fischer⁃Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956⁃3964.
|
16 |
CHENG Q P, TIAN Y, LYU S S, et al. Confined small⁃sized cobalt catalysts stimulate carbon⁃chain growth reversely by modifying ASF law of Fischer⁃Tropsch synthesis[J]. Nature Communications, 2018, 9(1): 3250.
|
17 |
ZHAI Y B, ZHANG J, SUN J Q, et al. The effect of the unpaired d⁃orbital electron number in Fe and Co catalysts on Fischer⁃Tropsch synthesis[J]. Catalysis Science & Technology, 2016, 6(22): 7942⁃7945.
|
18 |
DAI Y Y, ZHAO Y H, LIN T J, et al. Particle size effects of cobalt carbide for Fischer⁃Tropsch to olefins[J]. ACS Catalysis, 2019, 9(2): 798⁃809.
|
19 |
AN Y L, LIN T J, GONG K, et al. Tuning the facet proportion of Co2C nanoprisms for Fischer⁃Tropsch synthesis to olefins[J]. ChemCatChem, 2020, 12(6): 1630⁃1638.
|
20 |
WANG B J, LIANG D L, ZHANG R G, et al. Crystal facet dependence for the selectivity of C2 species over Co2C catalysts in the Fischer⁃Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2018, 122(51): 29249⁃29258.
|
21 |
WANG B J, LIANG D L, GUAN Z, et al. Understanding the key step of Co2C⁃catalyzed Fischer⁃Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2020, 124(10): 5749⁃5758.
|
22 |
ZHAO Y H, SU H Y, SUN K J, et al. Structural and electronic properties of cobalt carbide Co2C and its surface stability: Density functional theory study[J]. Surface Science, 2012, 606(5/6): 598⁃604.
|
23 |
WOLF M, FISCHER N, CLAEYS M. Water⁃induced deactivation of cobalt⁃based Fischer⁃Tropsch catalysts[J]. Nature Catalysis, 2020, 3(12): 962⁃965.
|
24 |
FANG X J, LIU B, CAO K, et al. Particle⁃size⁃dependent methane selectivity evolution in cobalt⁃based Fischer⁃Tropsch synthesis[J]. ACS Catalysis, 2020, 10(4): 2799⁃2816.
|
25 |
SHIBA N C, YAO Y L, FORBES R P, et al. Role of CoO⁃Co nanoparticles supported on SiO2 in Fischer⁃Tropsch synthesis: Evidence for enhanced CO dissociation and olefin hydrogenation[J]. Fuel Processing Technology, 2021, 216: 106781.
|
26 |
CAI J, JIANG F, LIU X H. Exploring pretreatment effects in Co/SiO2 Fischer⁃Tropsch catalysts: Different oxidizing gases applied to oxidation⁃reduction process[J]. Applied Catalysis B: Environmental, 2017, 210: 1⁃13.
|
27 |
NIKOLAOS E, MAGNUS R, ANDERS H, et al. Evaluation of reoxidation thresholds for γ‑Al2O3‑supported cobalt catalysts under Fischer⁃Tropsch synthesis conditions[J].Journal of the American Chemical Society, 2017, 139: 3706⁃3715.
|
28 |
CHEN T Y, SU J J, ZHANG Z P, et al. Structure evolution of Co⁃CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catalysis, 2018, 8(9): 8606⁃8617.
|
29 |
PEI Y P, LIU J X, ZHAO Y H, et al. High alcohols synthesis via Fischer⁃Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catalysis, 2015, 5(6): 3620⁃3624.
|
30 |
WOO M H, CHO J M, JUN K W, et al. Thermally stabilized cobalt⁃based Fischer⁃Tropsch catalysts by phosphorous modification of Al2O3: Effect of calcination temperatures on catalyst stability[J]. ChemCatChem, 2015, 7(9): 1460⁃1469.
|
31 |
MARTINELLI M, GNANAMANI M K, HOPPS S D, et al. Effect of phosphorus on the activity and stability of supported cobalt catalysts for Fischer⁃Tropsch synthesis[J]. ChemCatChem, 2018, 10(17): 3709⁃3716.
|
32 |
BRABANT C, KHODAKOV A, GRIBOVAL⁃CONSTANT A. Promotion of lanthanum⁃supported cobalt⁃based catalysts for the Fischer⁃Tropsch reaction[J]. Comptes Rendus Chimie, 2017, 20(1): 40⁃46.
|
33 |
JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co⁃based Fischer⁃Tropsch synthesis catalysts[J]. ACS Catalysis, 2016, 6(1): 100⁃114.
|
34 |
闫敬如, 娄舒洁, 孟闪茹, 等. Ru修饰负载型Co基费托合成催化剂性能研究[J]. 低碳化学与化工, 2023, 48(5): 46⁃54.
|
|
YAN J R, LOU S J, MENG S R, et al. Study on performance of supported Co⁃based Fischer Tropsch catalysts modified by Ru[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(5): 46⁃54.
|
35 |
XU R, HOU C P, XIA G F, et al. Effects of Ag promotion for Co/Al2O3 catalyst in Fischer⁃Tropsch synthesis[J]. Catalysis Today, 2020, 342: 111⁃114.
|
36 |
刘斌, 侯朝鹏, 夏国富, 等. 贵金属对Co/Al2O3催化剂费⁃托合成反应性能的影响[J]. 石油炼制与化工, 2013, 44(9): 1⁃5.
|
|
LIU B, HOU C P, XIA G F, et al. Effect of noble metal on cobalt⁃based Fischer⁃Tropsch synthesis catalysts supported on alumina[J]. Petroleum Processing and Petrochemicals, 2013, 44(9): 1⁃5.
|
37 |
XIE J X, PAALANEN P P, VAN DEELEN T W, et al. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas[J]. Nature Communications, 2019, 10(1): 167.
|
38 |
CORNARO U, ROSSINI S, MONTANARI T, et al. K⁃doping of Co/Al2O3 low temperature Fischer⁃Tropsch catalysts[J]. Catalysis Today, 2012, 197(1): 101⁃108.
|
39 |
DLAMINI M W, PHAAHLAMOHLAKA T N, KUMI D O, et al. Post doped nitrogen⁃decorated hollow carbon spheres as a support for Co Fischer⁃Tropsch catalysts[J]. Catalysis Today, 2020, 342: 99⁃110.
|
40 |
张天鹏, 王俊刚, 章日光, 等. 高导热SiO2@Al载体的制备及其在费托合成中的应用[J]. 燃料化学学报, 2021, 49(8): 1140⁃1147.
|
|
ZHANG T P, WANG J G, ZHANG R G, et al. Preparation of high thermal conductivity SiO2@Al support and its application in Fischer⁃Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1140⁃1147.
|
41 |
QIN C, BAI J Y, XU Y F, et al. A high active sites exposed hollow Co@SiO2 nanoreactor for high performance Fischer⁃Tropsch synthesis[J]. Fuel, 2022, 323: 124377.
|
42 |
HAN J, XIONG Z J, ZHANG Z L, et al. The influence of texture on Co/SBA⁃15 catalyst performance for Fischer⁃Tropsch synthesis[J]. Catalysts, 2018, 8(12): 661.
|
43 |
LIU C C, HE Y, WEI L, et al. Hydrothermal carbon⁃coated TiO2 as support for Co⁃based catalyst in Fischer⁃Tropsch synthesis[J]. ACS Catalysis, 2018, 8(2): 1591⁃1600.
|
44 |
TAGHAVI S, ASGHARI A, TAVASOLI A. Enhancement of performance and stability of Graphene nano sheets supported cobalt catalyst in Fischer⁃Tropsch synthesis using Graphene functionalization[J]. Chemical Engineering Research and Design, 2017, 119: 198⁃208.
|
45 |
LUO M S, LI S, DI Z X, et al. Fischer⁃Tropsch synthesis: Effect of nitric acid pretreatment on graphene⁃supported cobalt catalyst[J]. Applied Catalysis A: General, 2020, 599: 117608.
|
46 |
CHENG Q P, ZHAO N, LYU S S, et al. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer⁃Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2019, 248: 73⁃83.
|
47 |
CHERNYAK S, BURTSEV A, ARKHIPOVA E, et al. Cobalt⁃based Fischer⁃Tropsch catalysts supported on different types of N⁃doped carbon nanotubes[J]. Functional Materials Letters, 2020, 13(4): 2050025.
|
48 |
PAN X L, JIAO F, MIAO D Y, et al. Oxide⁃zeolite⁃based composite catalyst concept that enables syngas chemistry beyond Fischer⁃Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588⁃6609.
|
49 |
胡云峰, 薄洋, 冷传英, 等. 十元环一维孔道分子筛的合成及其正丁烯骨架异构性能分析[J]. 东北石油大学学报, 2014, 38(3): 116⁃122.
|
|
HU Y F, BO Y, LENG C Y, et al. Synthesis of molecular sieves with 10⁃membered ring of one⁃dimensional channel and analysis performance of skeletal isomerization of 1⁃butene[J]. Journal of Northeast Petroleum University, 2014, 38(3): 116⁃122.
|
50 |
CHENG S L, MAZONDE B, ZHANG G H, et al. Co⁃based MOR/ZSM⁃5 composite zeolites over a solvent⁃free synthesis strategy for improving gasoline selectivity[J]. Fuel, 2018, 223: 354⁃359.
|
51 |
JAVED M, CHENG S L, ZHANG G H, et al. Complete encapsulation of zeolite supported Co based core with silicalite⁃1 shell to achieve high gasoline selectivity in Fischer⁃Tropsch synthesis[J]. Fuel, 2018, 215: 226⁃231.
|
52 |
LI J, HE Y L, TAN L, et al. Integrated tuneable synthesis of liquid fuels via Fischer⁃Tropsch technology[J]. Nature Catalysis, 2018, 1(10): 787⁃793.
|
53 |
WANG H, WANG Z W, WANG S, et al. The effect of the particle size on Fischer⁃Tropsch synthesis for ZSM⁃5 zeolite supported cobalt⁃based catalysts[J]. Chemical Communications, 2021, 57(99): 13522⁃13525.
|
54 |
PENG X B, CHENG K, KANG J C, et al. Impact of hydrogenolysis on the selectivity of the Fischer⁃Tropsch synthesis: Diesel fuel production over mesoporous zeolite⁃Y⁃supported cobalt nanoparticles[J]. Angewandte Chemie International Edition, 2015, 54(15): 4553⁃4556.
|
55 |
李先明, 刘姝, 王晓宁. 吸附扩散现象的研究现状及展望[J]. 辽宁石油化工大学学报, 2018, 38(2): 20⁃25.
|
|
LI X M, LIU S, WANG X N. Research status and prospect of adsorption and diffusion[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2018, 38(2): 20⁃25.
|
56 |
ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193⁃3228.
|
57 |
PARK G, AHN C, PARK S, et al. Diffusion⁃dependent upgrading of hydrocarbons synthesized by Co/zeolite bifunctional Fischer⁃Tropsch catalysts[J]. Applied Catalysis A: General, 2020, 607: 117840.
|
58 |
JAVED M, CHENG S L, ZHANG G H, et al. A facile solvent⁃free synthesis strategy for Co⁃imbedded zeolite⁃based Fischer⁃Tropsch catalysts for direct gasoline production[J]. Chinese Journal of Catalysis, 2020, 41(4): 604⁃612.
|
59 |
SAAB R, POLYCHRONOPOULOU K, ZHENG L X, et al. Synthesis and performance evaluation of hydrocracking catalysts: A review[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 83⁃103.
|
60 |
MARTÍNEZ⁃VARGAS D X, SANDOVAL⁃RANGEL L, CAMPUZANO⁃CALDERON O, et al. Recent advances in bifunctional catalysts for the Fischer⁃Tropsch process: One⁃stage production of liquid hydrocarbons from syngas[J]. Industrial & Engineering Chemistry Research, 2019, 58(35): 15872⁃15901.
|
61 |
CHENG K, ZHANG L, KANG J C, et al. Selective transformation of syngas into gasoline⁃range hydrocarbons over mesoporous H⁃ZSM⁃5⁃supported cobalt nanoparticles[J]. Chemistry⁃A European Journal, 2015, 21(5): 1928⁃1937.
|
62 |
MARTÍNEZ A, PRIETO G. The application of zeolites and periodic mesoporous silicas in the catalytic conversion of synthesis gas[J]. Topics in Catalysis, 2009, 52(1): 75⁃90.
|
63 |
赵铁剑, 狄佐星, 罗明生. 核壳结构催化剂在费托合成中的应用[J]. 当代化工, 2018, 47(11): 2365⁃2371.
|
|
ZHAO T J, DI Z X, LUO M S. Application of core⁃shell structure catalysts in Fischer⁃Tropsch synthesis[J]. Contemporary Chemical Industry, 2018, 47(11): 2365⁃2371.
|
64 |
LIN Q H, ZHANG Q D, YANG G H, et al. Insights into the promotional roles of palladium in structure and performance of cobalt⁃based zeolite capsule catalyst for direct synthesis of C5—C11 iso⁃paraffins from syngas[J]. Journal of Catalysis, 2016, 344: 378⁃388.
|
65 |
LU P, SUN J, ZHU P F, et al. Sputtered nano⁃cobalt on H⁃USY zeolite for selectively converting syngas to gasoline[J]. Journal of Energy Chemistry, 2015, 24(5): 637⁃641.
|
66 |
CARVALHO A, MARINOVA M, BATALHA N, et al. Design of nanocomposites with cobalt encapsulated in the zeolite micropores for selective synthesis of isoparaffins in Fischer⁃Tropsch reaction[J]. Catalysis Science & Technology, 2017, 7(21): 5019⁃5027. (编辑 喻育红)
|