1 |
施珊. 石墨相氮化碳复合光催化剂的制备及光催化性能的研究[D]. 南京: 南京航空航天大学, 2015.
|
2 |
黄立英. 可见光响应型石墨相氮化碳复合材料的制备及其降解有机污染物研究[D]. 镇江: 江苏大学, 2013.
|
3 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37⁃38.
|
4 |
Carey J, Lawrence J, Tosine H. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environment Contamination and Toxicology, 1976, 16: 697⁃701.
|
5 |
Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277: 637⁃638.
|
6 |
Sajan C P, Wageh S, Al⁃Ghamdi A A, et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications[J]. Nano Research, 2016, 9: 3⁃27.
|
7 |
Zhang J, Sun J, Maeda K, et al. Sulfur⁃mediated synthesis of carbon nitride: Band⁃gap engineering and improved functions for photocatalysis[J]. Energy Environmental Science, 2011, 4(3): 675⁃678.
|
8 |
Kroke E, Schwarz M, Horath⁃Bordon E, et al. Tri⁃s⁃triazine derivatives. Part I. From trichloro⁃tri⁃s⁃triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5): 508⁃512.
|
9 |
Pauling L, Sturdivant J H. The structure of cyameluric acid hydromelonic acid and related substances[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(12): 615⁃620.
|
10 |
Fina F, Callear S K, Carins G M, et al. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction[J]. Chemistry of Materials, 2015, 27(7): 2612⁃2618.
|
11 |
Dong F, Wu L W, Sun Y J, et al. Efficient synthesis of polymeric g⁃C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal Materials Chemistry, 2011, 21(39): 15171⁃15174.
|
12 |
Li X H, Wang X, Antonietti M. Mesoporous g⁃C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemistry Science, 2012, 3(6): 2170⁃2174.
|
13 |
Schwinghammer K, Tuffy B, Mesch M B, et al. Triazine⁃based carbon nitrides for visible⁃light⁃driven hydrogen evolution[J]. Angewandte Chemie International Edition, 2013, 52: 2435⁃2439.
|
14 |
Yan S C, Li Z S, Zou Z G. Photodegradation performance of g⁃C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25: 10397⁃10401.
|
15 |
Zhang G G, Zhang J S, Zhang M W, et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts[J]. Journal Materials Chemistry, 2012, 22: 8083⁃8091.
|
16 |
窦海龙. 基于元素掺杂改性石墨相氮化碳光催化性能的研究[D]. 重庆: 西南大学, 2019.
|
17 |
陈路呀. 基于石墨烯或类石墨氮化碳复合光催化剂的制备、表征及其光催化性能的研究[D].广州: 华南理工大学, 2014.
|
18 |
Xiao H H, Wang W Y, Liu G G, et al. Photocatalytic performances of g⁃C3N4 based catalysts for RhB degradation: Effect of preparation conditions[J]. Applied Surface Science, 2015, 358: 313⁃318.
|
19 |
Mo Z, She X J, Li Y P, et al Synthesis of g⁃C3N4 at different temperatures for superior Visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution[J]. RSC Advance, 2015, 5: 101552⁃101562.
|
20 |
Hollmann D, Karnahl M, Tschierlei S, et al. Structure⁃activity relationships in bulk polymeric and sol⁃gel⁃derived carbon nitrides during photocatalytic hydrogen production[J]. Chemistry of Materials, 2014, 26: 1727⁃1733.
|
21 |
Zhang Y W, Liu J H, Wu G, et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight⁃driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4: 5300⁃5303.
|
22 |
Martin D J, Qiu K, Shevlin S A, et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure⁃controlled graphitic carbon nitride[J]. Angewandte Chemie International Edition, 2014, 53: 9240⁃9245.
|
23 |
Dong F, Wang Z Y, Sun Y J, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2013, 401: 70⁃79.
|
24 |
Niu P, Yin L C, Yang Y Q, et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self⁃modification with nitrogen vacancies[J]. Advanced Materials, 2014, 26(47): 8046⁃8052.
|
25 |
Wang X C, Maeda K, Thomas A, et al. A metal⁃free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8: 76⁃80.
|
26 |
Dong F, Sun Y J, Wu L W, et al. Facile transformation of low cost thiourea into nitrogen⁃rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance[J]. Catalysis Science Technology, 2012, 2: 1332⁃1335.
|
27 |
Liang Q, Li Z, Huang Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials, 2015, 25: 6885⁃6892.
|
28 |
Yan H, Chen Y, Xu S. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light[J].International Journal of Hydrogen Energy,2012,37:125⁃133.
|
29 |
Yuan Y W, Zhang L L, Xing J, et al. High⁃yield synthesis and optical properties of g⁃C3N4[J]. Nanoscale, 2015, 7: 12343⁃12350.
|
30 |
Zhao H X, Yu H T, Quan X, et al. Fabrication of atomic single layer graphitic⁃C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 152: 46⁃50.
|
31 |
Wu M, Gong Y S, Nie T, et al. Template⁃free synthesis of nanocage⁃like g⁃C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity[J]. Journal of Materials Chemistry A, 2019, 7: 5324⁃5332.
|
32 |
Chen C B, Li C X, Zhang Y J, et al. Cyano⁃rich mesoporous carbon nitride nanospheres for visible⁃light⁃driven photocatalytic degradation of pollutants[J]. Environmental Science: Nano, 2018, 5: 2966⁃2977.
|
33 |
Yue B, Li Q Y, Iwai H, et al. Hydrogen production using zinc⁃doped carbon nitride catalyst irradiated with visible light[J]. Science Technology of Advance Materials, 2011, 12(3): 034401.
|
34 |
Zhu J N, Zhu X Q, Cheng F F, et al. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton⁃like catalysis[J]. Applied Catalysis B: Environmental, 2019, 256: 117830⁃117842.
|
35 |
Ou H H, Tang C, Zhang Y F, et al. Se⁃modified polymeric carbon nitride nanosheets with improved photocatalytic activities[J]. Journal of Catalysis, 2019, 375: 104⁃112.
|
36 |
Huang T, Pan S G, Shi L L, et al. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping:A high⁃performance visible light⁃driven catalyst for nitrogen fixation[J]. Nanoscale, 2020, 12: 1833⁃1841.
|
37 |
Cao S W, Jiang J, Zhu B C, et al. Shape⁃dependent photocatalytic hydrogen evolution activity over Pt nanoparticles coupled g⁃C3N4 photocatalyst[J]. Physical Chemistry Chemical Physics, 2016, 18: 19457⁃19463.
|
38 |
Wang F L, Wang Y F, Li Y Y, et al. Facile synthesis of single atom⁃dispersed silver⁃modified ultrathin g⁃C3N4 hybrid for the enhanced visible⁃light photocatalytic degradation of sulfamethazine with peroxymonosulfate[J]. Dalton Transactions, 2018, 47: 6924⁃6933.
|
39 |
Wang H L, Zhang L S, Chen Z G, et al. Chem Inform abstract:Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2015, 45(38): 5234⁃5244.
|
40 |
Chong B, Chen L, Han D Z, et al. CdS⁃modified one⁃dimensional g⁃C3N4 porous nanotubes for efficient visible⁃light photocatalytic conversion[J]. Chinese Journal of Catalysis, 2019, 40: 959⁃968.
|
41 |
Fan G D, Du B H, Zhou J J, et al. Stable Ag2O/g⁃C3N4 p⁃n heterojunction photocatalysts for efficient inactivation of harmful algae under visible light[J]. Applied Catalysis B: Environmental, 2020, 265: 118610⁃118655.
|
42 |
刘帅, 刘进博, 李旭贺,等. WO3/g⁃C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报, 2019, 47(7): 852⁃862.
|
|
Liu S, Liu J B, Li X H, et al. Preparation of WO3/g⁃C3N4 heterojunction catalyst and its oxidative desulfurization performance [J]. Journal of Chemistry and Technology, 2019, 47(7): 852⁃862.
|
43 |
臧一鹏. g⁃C3N4/金属氧化物二元复合材料的合成与可见光光催化性能研究[D]. 福州:福州大学, 2014.
|
44 |
Xi J H, Xia H, Ning X M, et al. Carbon⁃intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation[J]. Small, 2019, 15: 1902744⁃1902756.
|
45 |
Jin Q, Xie G Y, Cai X X, et al. Three⁃dimensional microspheric g⁃C3N4 coupled by broussonetia papyrifera biochar:Facile sodium alginate immobilization and excellent photocatalytic Cr(IV) reduction[J]. RSC Advance, 2020, 10: 6121⁃6128.
|
46 |
Liu D N, Chen D Y, Li N J, et al. Surface engineering of g⁃C3N4 by stacked oxygen vacancies⁃rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 59: 4519⁃4524.
|