石油化工高等学校学报 ›› 2024, Vol. 37 ›› Issue (1): 43-51.DOI: 10.12422/j.issn.1006-396X.2024.01.006
杨文科1(), 卢连雪1, 李鹏2, 张健1(
), 胡绍争1
收稿日期:
2023-03-16
修回日期:
2023-04-03
出版日期:
2024-02-25
发布日期:
2024-02-07
通讯作者:
张健
作者简介:
杨文科(2000⁃),男,硕士研究生,从事新型光催化材料的制备与应用方面的研究;E⁃mail:1310926107@qq.com。
基金资助:
Wenke YANG1(), Lianxue LU1, Peng LI2, Jian ZHANG1(
), Shaozheng HU1
Received:
2023-03-16
Revised:
2023-04-03
Published:
2024-02-25
Online:
2024-02-07
Contact:
Jian ZHANG
摘要:
石墨相氮化碳(g?C3N4)作为一种对环境温和的半导体材料,在光催化领域具有良好的应用前景。但是,纯g?C3N4因比表面积小、光生载流子分离难等缺点影响了其光催化性能,限制了其大规模应用,因此对g?C3N4进行改性使其光催化性能得到提升具有重要意义。从合成方法和改性策略出发,综述了近年来g?C3N4光催化剂的研究进展,并总结了g?C3N4光催化剂在废水处理降解污染物、产H2及产H2O2等领域的应用发展。结果表明,改性后的g?C3N4光催化剂性能得到了巨大的提升。最后,对g?C3N4的发展方向进行了展望。
中图分类号:
杨文科, 卢连雪, 李鹏, 张健, 胡绍争. 光催化材料石墨相氮化碳的合成、改性及应用[J]. 石油化工高等学校学报, 2024, 37(1): 43-51.
Wenke YANG, Lianxue LU, Peng LI, Jian ZHANG, Shaozheng HU. Synthesis, Modification and Application of Photocatalytic Material Graphite Phase Carbon Nitride[J]. Journal of Petrochemical Universities, 2024, 37(1): 43-51.
合成方法 | 优点 | 缺点 |
---|---|---|
溶剂热法 | 反应过程简单,容易控制,产物形貌均匀[ | 效率较低,存在有机溶剂污染问题,产物结晶度较差[ |
电化学沉积法 | 可制备薄膜、片状g⁃C3N4,便于对产物进行形貌调控[ | 反应条件要求高,步骤较为繁琐[ |
固相反应法 | 产物结晶度高,可制备具有特殊形貌的g⁃C3N4[ | 反应条件较严格,产物中可能有非晶碳成分[ |
热缩聚合成法 | 成本低、产量高、操作简单,产物结构容易控制[ | 产物一般呈块状,比表面积较低[ |
微波辅助加热法 | 加热速率快,过程易于控制,可选择性加热介质[ | 前驱物质如三聚氰胺等对微波不敏感[ |
表1 g?C3N4合成方法的优缺点
Table 1 The advantages and disadvantages of g?C3N4 synthesis methods
合成方法 | 优点 | 缺点 |
---|---|---|
溶剂热法 | 反应过程简单,容易控制,产物形貌均匀[ | 效率较低,存在有机溶剂污染问题,产物结晶度较差[ |
电化学沉积法 | 可制备薄膜、片状g⁃C3N4,便于对产物进行形貌调控[ | 反应条件要求高,步骤较为繁琐[ |
固相反应法 | 产物结晶度高,可制备具有特殊形貌的g⁃C3N4[ | 反应条件较严格,产物中可能有非晶碳成分[ |
热缩聚合成法 | 成本低、产量高、操作简单,产物结构容易控制[ | 产物一般呈块状,比表面积较低[ |
微波辅助加热法 | 加热速率快,过程易于控制,可选择性加热介质[ | 前驱物质如三聚氰胺等对微波不敏感[ |
前驱体 | 名称 | 催化性能提升机理 | 产H2O2性能评价 | 参考文献 |
---|---|---|---|---|
双氰胺、仲钨 酸铵 | 富氧g⁃C3N4聚合物(OCN) | OCN电荷分离能力强且容易形成1,4⁃内过氧化物,容易产H2O2 | OCN产H2O2的表观量子产率达到28.5% | [ |
三聚氰胺、乙酰氯/草酰氯/三甲酰氯 | 酰胺化交联聚合g⁃C3N4 | 酰胺键加速电子迁移速度,同时降低胺基的比例,从而获得较高的H2O2生成选择性 | 电阻小,促进2O | [ |
三聚氰胺 | 氮缺陷g⁃C3N4超薄纳米片 | 多步焙烧增加g⁃C3N4的比表面积,N缺陷的形成可加速电荷转移,提高载流子的分离效率 | 30 min内H2O2的产率是原始g⁃C3N4的18.0倍 | [ |
三聚氰胺、NH4X(X为Cl或Br) | 卤素掺杂的 g⁃C3N4纳米棒 | 饱和盐溶液水热后制备的催化剂比表面积大,有效分离率高 | Br掺杂g⁃C3N4催化剂性能是 g⁃C3N4的2.0倍以上 | [ |
三聚氰胺、 Na2SnO3 | SnO2偶联氰基改性g⁃C3N4 | 氰基和SnO2纳米晶的引入拓宽g⁃C3N4的光吸收范围,增强电子的产生和转移能力,加速中间产物·O | H2O2产率达到703.4 μmol/(g | [ |
三聚氰胺、硼酸和氯化铯 | 硼铯共掺杂 g⁃C3N4纳米片 | π⁃共轭结构中的电荷载流子迀移率增强,共掺杂和多孔褶皱纳米片形成协同效应 | H2O2产率达到113 μmol/(g | [ |
尿素、接枝噻吩(TP) | g⁃C3N4⁃TP | 通过增强的电荷分离能力和优化的O2吸附协同作用,促进光催化2e-氧还原反应中生产H2O2的选择性和活性 | H2O2产率约为原始g⁃C3N4的 4.0倍 | [ |
尿素、氯化锂 | Li⁃g⁃C3N4 | 锂离子不仅可以优化缩合反应过程,还可以增强分子氧的表面吸附,增加反应中的电子转移次数 | 具有优异的光催化H2O2生成活性(2 680 μmol/(g | [ |
表2 多种g?C3N4复合光催化剂产H2O2性能评价
Table 2 Performance evaluation of various composite photocatalysts g?C3N4 for H2O2 production
前驱体 | 名称 | 催化性能提升机理 | 产H2O2性能评价 | 参考文献 |
---|---|---|---|---|
双氰胺、仲钨 酸铵 | 富氧g⁃C3N4聚合物(OCN) | OCN电荷分离能力强且容易形成1,4⁃内过氧化物,容易产H2O2 | OCN产H2O2的表观量子产率达到28.5% | [ |
三聚氰胺、乙酰氯/草酰氯/三甲酰氯 | 酰胺化交联聚合g⁃C3N4 | 酰胺键加速电子迁移速度,同时降低胺基的比例,从而获得较高的H2O2生成选择性 | 电阻小,促进2O | [ |
三聚氰胺 | 氮缺陷g⁃C3N4超薄纳米片 | 多步焙烧增加g⁃C3N4的比表面积,N缺陷的形成可加速电荷转移,提高载流子的分离效率 | 30 min内H2O2的产率是原始g⁃C3N4的18.0倍 | [ |
三聚氰胺、NH4X(X为Cl或Br) | 卤素掺杂的 g⁃C3N4纳米棒 | 饱和盐溶液水热后制备的催化剂比表面积大,有效分离率高 | Br掺杂g⁃C3N4催化剂性能是 g⁃C3N4的2.0倍以上 | [ |
三聚氰胺、 Na2SnO3 | SnO2偶联氰基改性g⁃C3N4 | 氰基和SnO2纳米晶的引入拓宽g⁃C3N4的光吸收范围,增强电子的产生和转移能力,加速中间产物·O | H2O2产率达到703.4 μmol/(g | [ |
三聚氰胺、硼酸和氯化铯 | 硼铯共掺杂 g⁃C3N4纳米片 | π⁃共轭结构中的电荷载流子迀移率增强,共掺杂和多孔褶皱纳米片形成协同效应 | H2O2产率达到113 μmol/(g | [ |
尿素、接枝噻吩(TP) | g⁃C3N4⁃TP | 通过增强的电荷分离能力和优化的O2吸附协同作用,促进光催化2e-氧还原反应中生产H2O2的选择性和活性 | H2O2产率约为原始g⁃C3N4的 4.0倍 | [ |
尿素、氯化锂 | Li⁃g⁃C3N4 | 锂离子不仅可以优化缩合反应过程,还可以增强分子氧的表面吸附,增加反应中的电子转移次数 | 具有优异的光催化H2O2生成活性(2 680 μmol/(g | [ |
1 | 刘志超.石墨相氮化碳基复合光催化材料的制备及其产过氧化氢的性能研究[D].太原:太原理工大学,2021. |
2 | 马爱琼,张电,张由子,等.纳米片层状类石墨氮化碳的制备及其光催化性能[J].硅酸盐学报,2020,48(1):44⁃52. |
MA A Q,ZHANG D,ZHANG Y Z,et al.Preparation and photocatalytic properties under visible light irradiation of graphite⁃like carbon nitride nanosheets[J].Journal of the Chinese Ceramic Society,2020,48(1):44⁃52. | |
3 | 赖树锋,肖开棒,梁锦芝,等.石墨氮化碳光催化剂的制备及其改性研究进展[J].人工晶体学报,2020,49(4):744⁃750.LAI S F,XIAO K B,LIANG J Z,et al.Research progress on preparation and modification of graphite carbon nitride photocatalyst[J].Journal of Synthetic Crystals,2020,49(4):744⁃750. |
4 | WANG X C,MAEDA K,THOMAS A,et al.A metal⁃free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2009,8(1):76⁃80. |
5 | 杨萍,李有喜,蔡武锋,等.双金属MOF⁃74(MgxNi1- x)的制备及其对CO2/N2的吸附分离性能研究[J].辽宁石油化工大学学报,2022,42(6):1⁃7. |
YANG P,LI Y X,CAI W F,et al.Preparation of bimetallic MOF⁃74(MgxNi1- x) and its adsorption and separation performance for CO2/N2[J].Journal of Liaoning Petrochemical University,2022,42(6):1⁃7. | |
6 | JIA L,CHENG X X,WANG X N,et al.Large⁃scale preparation of g⁃C3N4 porous nanotubes with enhanced photocatalytic activity by using salicylic acid and melamine[J].Industrial & Engineering Chemistry Research,2020,59(3):1065⁃1072. |
7 | CUI Y J,DING Z X,FU X Z,et al.Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J].Angewandte Chemie International Edition,2012,51(47):11814⁃11818. |
8 | LI C,CAO C B,ZHU H S,et al.Electrodeposition route to prepare graphite⁃like carbon nitride[J].Materials Science and Engineering: B,2004,106(3):308⁃312. |
9 | GUO Q X,YANG Q, YI C Q,et al.Synthesis of carbon nitrides with graphite⁃like or onion⁃like lamellar structures via a solvent⁃free route at low temperatures[J].Carbon,2005,43(7):1386⁃1391. |
10 | ZHANG Z,LEINENWEBER K,BAUER M,et al.High⁃pressure bulk synthesis of crystalline C6N9H3•HCl:A novel C3N4 graphitic derivative[J].Journal of the American Chemical Society,2001,123(32):7788⁃7796. |
11 | GU Y L,CHEN L Y,SHI L,et al.Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide[J].Carbon,2003,41(13):2674⁃2676. |
12 | 姜鹏程,王周福,王玺堂,等.不同气氛下类石墨相氮化碳的合成及热稳定性能[J].材料导报,2021,35(6):6048⁃6053.JIANG P C,WANG Z F,WANG X T,et al.Synthesis of graphite⁃like carbon nitride in different atmospheres and its thermal stability[J].Materials Reports,2021,35(6):6048⁃6053. |
13 | LONG B H,LIN J L,WANG X C.Thermally⁃induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis[J].Journal of Materials Chemistry A,2014,2(9):2942⁃2951. |
14 | 王继刚,余永志,邹婧叶,等.基于微波辐照合成类石墨烯氮化碳的研究进展[J].材料工程,2019,47(4):15⁃24. |
WANG J G,YU Y Z,ZOU J Y,et al.Progress in microwave irradiation synthesis of graphene⁃like carbon nitride[J].Journal of Materials Engineering,2019,47(4):15⁃24. | |
15 | 白佳琦,崔雨琦,唐清文,等.石墨相氮化碳光催化剂的制备、改性及其在水处理中的应用[J].环境科学学报,2022,42(2):69⁃80. |
BAI J Q,CUI Y Q,TANG Q W,et al.Preparation and modification of graphite⁃phase carbon nitride photocatalyst and its application in water treatment[J].Acta Scientiae Circumstantiae,2022,42(2):69⁃80. | |
16 | 吝美霞,李法云,王艳杰,等. 改性石墨相氮化碳光催化降解有机污染物[J].辽宁石油化工大学学报,2019,39(2):1⁃9. |
LIN M X,LI F Y,WANG Y J,et al.Photocatalytic degradation of organic pollutants by modified graphite phase carbonitride[J]. Journal of Liaoning Shihua University, 2019, 39(2):1⁃9. | |
17 | 王亦清, 沈少华. 非金属掺杂石墨相氮化碳光催化的研究进展与展望[J].物理化学学报,2020,36(3):106⁃119. |
WANG Y Q,SHEN S H.Progress and prospects of non⁃metal doped graphitic carbon nitride for improved photocatalytic performances[J]. Acta Physico⁃Chimica Sinica,2020,36(3):106⁃119. | |
18 | LIU G,NIU P,SUN C H,et al. Unique electronic structure induced high photoreactivity of sulfur⁃doped graphitic C3N4[J].Journal of the American Chemical Society,2010,132(33):11642⁃11648. |
19 | YAN S C,LI Z S,ZOU Z G.Photodegradation of rhodamine B and methyl orange over boron⁃doped g⁃C3N4 under visible light irradiation[J].Langmuir,2010,26(6):3894⁃3901. |
20 | WEN J Q,XIE J,ZHANG H D,et al.Constructing multifunctional metallic Ni interface layers in the g⁃C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation[J].ACS Applied Materials & Interfaces,2017,9(16):14031⁃14042. |
21 | 张仰全,李龙飞,周峰,等.Zr掺杂g⁃C3N4光催化降解有机污染物[J].精细化工,2022,39(10):2112⁃2121. |
ZHANG Y Q,LI L F,ZHOU F,et al.Zr⁃doped g⁃C3N4 photocatalytic degradation of organic pollutants[J].Fine Chemicals,2022,39(10):2112⁃2121. | |
22 | CHANG X Y,FAN H Q,ZHU S W,et al. Engineering doping and defect in graphitic carbon nitride by one⁃pot method for enhanced photocatalytic hydrogen evolution[J].Ceramics International,2023,3:6729⁃6738. |
23 | 马琳,康晓雪,胡绍争,等.Fe⁃P共掺杂石墨相氮化碳催化剂可见光下催化性能研究[J].分子催化,2015,29(4):359⁃368. |
MA L,KANG X X,HU S Z,et al.Preparation of Fe, P co⁃doped graphitic carbon nitride with enhanced visible⁃light photocatalytic activity[J].Journal of Molecular Catalysis (China),2015,29(4):359⁃368. | |
24 | 彭小明,吴健群,戴红玲,等.Fe、N共掺杂原子级分散Fe⁃g⁃C3N4催化剂活化过硫酸盐降解亚甲基蓝的机制[J].环境科学学报,2022,42(5):225⁃236. |
PENG X M,WU J Q,DAI H L,et al.Degradation mechanism of methylene blue by Fe⁃g⁃C3N4 catalyst activation peroxymonosulfate[J].Acta Scientiae Circumstantiae,2022,42(5):225⁃236. | |
25 | LIN S F,ZHANG N,WANG F C,et al.Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g⁃C3N4 schottky junction catalyst for photocatalytic H2O2 production[J].ACS Sustainable Chemistry & Engineering,2021,9(1):481⁃488. |
26 | ZHANG Z Y,WANG Z,CAO S W,et al.Au/Pt nanoparticle⁃decorated TiO2 nanofibers with plasmon⁃enhanced photocatalytic activities for solar⁃to⁃fuel conversion[J].The Journal of Physical Chemistry C,2013,117(49):25939⁃25947. |
27 | WANG J J,TANG L,ZENG G M,et al.Plasmonic Bi metal deposition and g⁃C3N4 coating on Bi2WO6 microspheres for efficient visible⁃light photocatalysis[J].ACS Sustainable Chemistry & Engineering,2017,5(1):1062⁃1072. |
28 | 肖开棒,许伟城,梁发文,等.Mo源改性石墨相氮化碳(g⁃C3N4)活化过⁃硫酸盐可见光降解罗丹明B的性能研究[J].环境科学学报,2021,41(9):3521⁃3534. |
XIAO K B,XU W C,LIANG F W,et al.Efficient activation of peroxymonosulfate by Mo source modified graphite phase carbon nitride (g⁃C3N4) for the degradation of rhodamine B under visible light[J].Acta Scientiae Circumstantiae,2021,41(9):3521⁃3534. | |
29 | 谢磊,刘帅,孙有为,等.石墨相氮化碳光催化剂的研究进展[J].石油化工高等学校学报,2021,34(6):27⁃34. |
XIE L,LIU S,SUN Y W,et al.Research progress of graphite phase carbon nitride photocatalysts[J].Journal of Petrochemical Universities,2021,34(6):27⁃34. | |
30 | 杨冬,周致远,丁菲,等. 特殊形貌g⁃C3N4基光催化材料的研究进展[J]. 化工进展,2019,38(1):495⁃504. |
YANG D, ZHOU Z Y, DING F, et al. Research advances of g⁃C3N4⁃based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 495⁃504. | |
31 | WU X H,WANG X F, WANG F Z, et al. Soluble g⁃C3N4 nanosheets: Facile synthesis and application in photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 247: 70⁃77. |
32 | CHEN Y,DING F,KHAING A,et al.Acetic acid⁃assisted supramolecular assembly synthesis of porous g⁃C3N4 hexagonal prism with excellent photocatalytic activity[J].Applied Surface Science,2019,479:757⁃764. |
33 | WANG W B,SHU Z,ZHOU J, et al. Halloysite⁃derived mesoporous g⁃C3N4 nanotubes for improved visible⁃light photocatalytic hydrogen evolution[J]. Applied Clay Science, 2018, 158: 143⁃149. |
34 | 李烁,姚楠.石墨相氮化碳的制备、改性及催化加氢应用[J].高校化学工程学报,2020,34(5):1091⁃1101. |
LI S, YAO N. Preparation, modification and the application in catalytic hydrogenation of graphitic carbon nitride[J].Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1091⁃1101. | |
35 | GE J H,LIU Y J,JIANG D C,et al.Integrating non⁃precious⁃metal cocatalyst Ni3N with g⁃C3N4 for enhanced photocatalytic H2 production in water under visible⁃light irradiation[J].Chinese Journal of Catalysis,2019,40(2):160⁃167. |
36 | TONG Z W,YANG D,ZHAO X Y,et al.Bio⁃inspired synthesis of three⁃dimensional porous g⁃C3N4@carbon microflowers with enhanced oxygen evolution reactivity[J].Chemical Engineering Journal,2018,337:312⁃321. |
37 | GUAN R Q,LI J X,ZHANG J K,et al.Photocatalytic performance and mechanistic research of ZnO/g⁃C3N4 on degradation of methyl orange[J].ACS Omega,2019,4(24):20742⁃20747. |
38 | THOMAS M,KOZIK V,BĄK A,et al.Removal of heavy metal ions from wastewaters:An application of sodium trithiocarbonate and wastewater toxicity assessment[J].Materials,2021,14(3):655. |
39 | 王文耀,朱君江,王涛,等.介孔氮化碳:一种新型高效的亚甲基蓝消除吸附剂[J].中国科学(化学),2016,46(8):784⁃790. |
WANG W Y,ZHU J J,WANG T,et al.Mesoporous graphitic carbon nitride:A new and efficient adsorbent for adsorption removal of methylene blue[J].Scientia Sinica Chimica,2016,46(8):784⁃790. | |
40 | 殷超,刘亚利,吕舒怡,等.PS协同Z型异质结二维BiOI/g⁃C3N4光催化降解四环素[J].精细化工,2022,39(7):1457⁃1463. |
YIN C,LIU Y L,LÜ S Y,et al.Photocatalytic degradation of tetracycline by PS synergizing with Z⁃type heterojunction two⁃dimensional BiOI/g⁃C3N4[J].Fine Chemicals,2022,39(7):1457⁃1463. | |
41 | 苏荣军,姜灏,魏澜,等. 石墨相氮化碳的改性及其在色素废水领域的应用[J].中国食品添加剂,2021,32(12):197⁃207. |
SU R J,JIANG H,WEI L,et al.Modification of graphite⁃phase carbon nitride and its application in synthetic pigment wastewater[J].China Food Additives,2021,32(12):197⁃207. | |
42 | XIA C,XIA Y,ZHU P,et al.Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J].Science,2019,366(6462):226⁃231. |
43 | 雷一帆,雷圣宾,朴玲钰.光催化氧气还原制备H2O2[J].化学进展,2021,33(1):66⁃77. |
LEI Y F,LEI S B,PIAO L Y.Preparation of H2O2 by photocatalytic reduction of oxygen[J].Progress in Chemistry,2021,33(1):66⁃77. | |
44 | 张慧,李昕煜,王帅杰,等.g⁃C3N4基材料光催化产H2O2研究进展[J].环境化学,2022,41(11):3799⁃3814. |
ZHANG H,LI X Y,WANG S J,et al.Progress in photocatalytic production of H2O2 from g⁃C3N4⁃based materials[J].Environmental Chemistry,2022,41(11):3799⁃3814. | |
45 | 王辉,裴彦博,胡绍争,等.能级可调的钾离子掺杂石墨相氮化碳的可控制备及“双渠道”光催化合成过氧化氢性能[J].高等学校化学学报,2018,39(7):1503⁃1510. |
WANG H,PEI Y B,HU S Z,et al.Synthesis and "two channel pathway" photocatalytic H2O2 production ability of band gap tunable K+doped graphitic carbon nitride[J].Chemical Journal of Chinese Universities,2018,39(7):1503⁃1510. | |
46 | WEI Z,LIU M L,ZHANG Z J,et al.Efficient visible⁃light⁃driven selective oxygen reduction to hydrogen peroxide by oxygen⁃enriched graphitic carbon nitride polymers[J].Energy & Environmental Science,2018,11(9):2581⁃2589. |
47 | HU Q Y,DONG Y J,MA K W,et al.Amidation crosslinking of polymeric carbon nitride for boosting photocatalytic hydrogen peroxide production[J].Journal of Catalysis,2022,413:321⁃330. |
48 | LIU L L,CHEN F,WU J H,et al.Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction[J].Applied Catalysis B:Environmental,2022,302:120845. |
49 | ZHANG C L,BAI J,MA L,et al.Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X=Cl,Br) solution⁃hydrothermal post⁃treatment[J].Diamond and Related Materials,2018,87:215⁃222. |
50 | CHU C C,MIAO W,LI Q J,et al.Highly efficient photocatalytic H2O2 production with cyano and SnO2 co⁃modified g⁃C3N4[J].Chemical Engineering Journal,2022,428:132531. |
51 | MAHVELATI⁃SHAMSABADI T,FATTAHIMOGHADDAM H,LEE B K,et al.Caesium sites coordinated in boron⁃doped porous and wrinkled graphitic carbon nitride nanosheets for efficient charge carrier separation and transfer:Photocatalytic H2 and H2O2 production[J].Chemical Engineering Journal,2021,423:130067. |
52 | 邹菁,廖国东,王海涛,等.石墨相氮化碳光催化产氢性能提升策略研究进展[J].华中师范大学学报(自然科学版),2021,55(6):950⁃961. |
ZOU J,LIAO G D,WANG H T,et al.Recent advances in improving the performance of graphite⁃phase carbon nitride based photocatalysts for hydrogen evolution[J].Journal of Huazhong Normal University(Natural Sciences),2021,55(6):950⁃961. | |
53 | LUO Y,LIN Y F,WENG Z L,et al.Rational design of donor⁃acceptor engineered g⁃C3N4 for boosted H2O2 production via photocatalytic O2 reduction[J].Journal of Environmental Chemical Engineering,2023,11(2):109426. |
54 | GUO Z W,LI B R,XU M,et al.Crystallinity and thickness modulation of polymeric carbon nitride by dual⁃functional lithium ions for boosting photocatalytic H2O2 production[J].Applied Surface Science,2022,606:154733. |
55 | JIANG J,CAO S W,HU C L,et al.A comparison study of alkali metal⁃doped g⁃C3N4 for visible⁃light photocatalytic hydrogen evolution[J].Chinese Journal of Catalysis,2017,38(12):1981⁃1989. |
56 | YANG Q S,HU S N,YAO Y X,et al.Engineering graphitic carbon nitride with expanded interlayer distance for boosting photocatalytic hydrogen evolution[J].Chinese Journal of Catalysis,2021,42(1):217⁃224. |
57 | 解众舒,薛中鑫,许子文,等.石墨相氮化碳的共轭交联修饰及其对可见光催化产氢性能的影响[J].化学学报,2022,80(9):1231⁃1237. |
XIE Z S,XUE Z X,XU Z W,et al.Conjugated crosslinking modification of graphitic carbon nitrides and its effect on visible light⁃driven photocatalytic hydrogen production[J].Acta Chimica Sinica,2022,80(9):1231⁃1237. | |
58 | HUANG T,CHEN J Q,ZHANG L L,et al.Precursor⁃modified strategy to synthesize thin porous amino⁃rich graphitic carbon nitride with enhanced photocatalytic degradation of RhB and hydrogen evolution performances[J].Chinese Journal of Catalysis,2022,43(2):497⁃506. |
59 | YU X H,SU H W,ZOU J P,et al.Doping⁃induced metal⁃N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance[J].Chinese Journal of Catalysis,2022,43(2):421⁃432. |
[1] | 马馨月, 陈雷, 王芳芳, 陈常东. g⁃C3N4/Co3O4的制备及其光催化降解四环素研究[J]. 石油化工高等学校学报, 2024, 37(5): 56-64. |
[2] | 王嘉曼, 熊靖, 师金鸽, 韦岳长, 霍开玲. TiO2催化剂催化CO2还原的研究进展[J]. 石油化工高等学校学报, 2024, 37(4): 1-11. |
[3] | 付哲, 苑兴洲, 韩乔, 武宏大, 杨占旭. 纤维素气凝胶的制备及其应用进展[J]. 石油化工高等学校学报, 2024, 37(1): 52-58. |
[4] | 宁尧, 刘满, 刘素燕. 多孔碳BVO/Zn@ZPC的制备及其光降解性能[J]. 石油化工高等学校学报, 2023, 36(6): 36-47. |
[5] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[6] | 张若男, 何仕婕, 王晓蓉, 王芳芳, 陈常东. BaTiO3⁃TiO2复合体的软化学制备及其性能研究[J]. 石油化工高等学校学报, 2022, 35(4): 46-51. |
[7] | 赵东启, 顾贵洲, 李政. 水滑石类光催化剂在污水处理中的应用[J]. 石油化工高等学校学报, 2022, 35(3): 36-42. |
[8] | 陈佳慧, 黎泓麟, 杨紫坤, 罗鸿仙, 张金生, 李丽华. GO改性的铈基纳米复合光催化剂性能对比研究[J]. 石油化工高等学校学报, 2022, 35(1): 63-67. |
[9] | 刘纪法, 陈雪冰, 王芳芳, 张静, 陈常东. 六方相/单斜相WO3“异相结”的可控合成及光催化性能[J]. 石油化工高等学校学报, 2021, 34(6): 22-26. |
[10] | 谢磊, 刘帅, 孙有为, 张健, 胡绍争. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34. |
[11] | 齐永娟, 宫晓杰, 张丹, 吴限, 李丽华. 单模聚焦微波法制备MIL⁃53(Fe)及其光催化性能研究[J]. 石油化工高等学校学报, 2021, 34(5): 24-29. |
[12] | 周月娥, 陈雪冰, 张静. 内建电场调控光生电荷分离效率的研究进展[J]. 石油化工高等学校学报, 2021, 34(3): 1-6. |
[13] | 崔美玉, 李飞. 可见光催化的烯烃胺化反应的研究进展[J]. 石油化工高等学校学报, 2021, 34(3): 31-37. |
[14] | 李鹏, 吕振波, 于芳. 可见光催化环丁醇的C-C断裂胺化反应的研究[J]. 石油化工高等学校学报, 2020, 33(4): 1-5. |
[15] | 商宇桐, 杨丽娜, 管景国, 李剑. 光催化氧化脱硫催化剂研究进展[J]. 石油化工高等学校学报, 2020, 33(2): 12-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发