模板剂是合成分子筛必不可少的组成部分,对分子筛的物理性质和催化性能有很大的影响。以不锈钢管为晶化器,采用水热法合成SAPO?34分子筛,考察了PEG?800对分子筛结晶度、形貌和酸性的影响,并对其MTO催化性能进行测评。结果表明,以四乙基氢氧化铵(TEAOH)和PEG?800为复合模板剂所合成的分子筛样品呈薄板状,结晶度和酸性适宜,且催化寿命最长可达340 min;当甲醇转化率大于95%时,双烯选择性可达84.0%,同时发现板层状分子筛的晶体厚度越薄催化性能越好。
以大孔纳米氧化铝为载体、铁为助剂,对以Mo、Ni为活性中心的加氢催化剂进行改性,采用二次纳米自组装方法分别制备Fe?Mo?Ni和Fe?Ni催化剂。结果表明,经Fe改性的MNF?70C与NF?70C催化剂均为双峰孔结构,较大最可几孔径分别为50.0、40.0 nm,较小最可几孔径均为5.5 nm左右。在络合剂和助剂Fe的作用下,MNF?70C催化剂中Fe与Mo、Ni在大孔氧化铝内外表面以金属键的形式形成大量纳米自组装体,分散更加均匀,具有更多适合加氢反应的孔道。同时,MNF?70C和NF?70C催化剂的孔径分布在6.0~60.0 nm的比例分别达到78.05%和72.80%,这说明结构型助剂Fe的加入改善了活性金属的分散性,从而有效改善催化剂的孔径分布。CO吸附、H2?TPR、TEM和XPS的表征分析结果进一步表明,经Fe改性的催化剂对CO的吸附均以线式吸附,其还原温度较低,且均已纳米粒子的形式均匀分散,具有更多的催化活性中心,而Fe改性的MNF?70C催化剂活性中心较多,说明此类催化剂具有较好的加氢催化活性。由于Fe元素廉价,助剂的加入可提高加氢后油品的质量或者降低催化剂活性金属的用量,从而降低合成催化剂的成本,适合工业应用重油加氢催化剂的开发。
以正辛酸?氯化锌型低共熔溶剂(OA?ZnCl2)为添加组分、硅胶(SG)为载体,经溶胶?凝胶过程合成OA?ZnCl2/SG负载型催化剂。采用红外光谱、X射线衍射、N2?吸附脱附和扫描电镜等技术对催化剂的结构进行分析。以OA?ZnCl2/SG为吸附剂和催化剂、双氧水为氧化剂,研究其氧化脱硫性能。考察了低共熔溶剂的负载量、反应温度、n(H2O2)/n(S)、催化剂质量和不同硫化物对脱硫效果的影响。结果表明,在最佳条件下催化剂的脱硫率达到95.6%,经过5 次循环后脱硫率降为89.7%。
采用室内模拟实验的方法,研究了硫酸盐还原菌(SRB)和CaCO3垢层共存对20号钢腐蚀行为的影响。通过腐蚀失重法研究平均腐蚀速率,通过电化学阻抗谱(EIS)和开路电位(OCP)研究注入水溶液中20号钢腐蚀电化学行为,利用扫描电镜(SEM)、EDS和Raman光谱分析20号钢表面腐蚀产物的形貌和成分,采用激光共聚焦显微镜(CLSM)分析20号钢的点蚀坑深度。结果表明,SRB与CaCO3垢层存在协同作用,CaCO3垢层的孔隙率和垢层下的厌氧环境为SRB的黏附和生长提供了便利的条件,接种SRB对CaCO3垢层下20号钢的均匀腐蚀和局部腐蚀均有促进作用。
随着人工智能技术的发展以及大数据互联网技术的应用,管道泄漏检测技术向智能化的方向发展。将管道泄漏检测技术分为连续性技术和非连续性技术两大类,介绍了多种泄漏检测方法的原理,总结并分析了国内外长输油管道泄漏检测技术的研究现状,对多种检测方法相结合的输油管道泄漏检测与定位技术在长输油管道检测中的应用进行了展望。
在高压低温的输送条件下,湿气集输管道中会有天然气水合物生成,而生成的水合物可能会导致管道堵塞或关键控制设备失灵等诸多风险。加注醇类水合物热力学抑制剂(THI),是预防湿气管道生成水合物的方法之一。若THI注入量过大,则不仅会增加采购、运输和储存成本,而且还会增加水处理成本。因此,在一定安全裕度的基础上,确定THI的最小注入量至关重要。基于经验公式法和相平衡软件的THI注入量的计算,不考虑流动的影响。为优化THI注入量,采用相平衡与流动耦合计算法,基于OLGA组分跟踪模型,对沿线的温度、压力以及THI质量分数进行了跟踪,以期较为准确地预测THI注入量。以陆地气田气和海底油田伴生气集输管道为例,对不同计算方法进行了对比。结果表明,相平衡与流动耦合计算法可减少THI注入量10%以上。
重晶石是油基钻井液的主要加重剂,但是其加重的高密度油基钻井液存在诸多问题。为了探究微锰矿粉在油基钻井液中的适用性,采用激光粒度分析仪和扫描电镜分析了重晶石和微锰矿粉的粒度分布和微观形态,对比分析了重晶石油基钻井液体系和微锰矿粉油基钻井液体系在流变性、失水造壁性、润滑性、沉降稳定性、储层保护性能方面的差异。结果表明,在低密度条件下,微锰矿粉体系和重晶石体系差异小;在高密度或超高密度条件下,微锰矿粉体系低黏高切,泥饼黏滞系数小于0.10,沉降密度差小于0.03 g/cm3,酸溶后渗透率恢复率大于95.00%,其流变性、润滑性、沉降稳定性、储层保护性能均优于重晶石体系;微锰矿粉体系比重晶石体系失水量大,泥饼质量差,建议将微锰矿粉中复配重晶石以提高体系的失水造壁性。研究结果全面揭示了微锰矿粉油基钻井液体系和重晶石油基钻井液体系性能的差异,对微锰矿粉改善高密度、超高密度油基钻井液的性能提供支撑,也为超高密度油基钻井液加重剂应用提供了新的发展方向。
中国石化大连石油化工研究院开发的“低温柴油吸收”VOCs治理技术在某炼厂芳烃及苯乙烯罐区的应用中,存在液环压缩机吸入罐区废气的气量稳定性不足的问题。针对这一问题,采用一种新型液环压缩机自动引气控制方案,通过测量与罐区联通管道上的压力值,并根据压力值设计压缩机电机频率及液环压缩机回流阀开度的引气控制方案,最终得出最优的控制参数。结果表明,此方法可以在确保废气达标排放的同时满足节能降耗的要求,并兼顾设备的长周期平稳运行。
气化炉是水煤浆气化系统的主要设备,为研究气化炉故障对气化系统的影响,提出一种基于动态贝叶斯网络与风险矩阵相结合的动态风险评估方法。以气化炉故障为例,首先建立了气化炉的动态贝叶斯网络模型,结合模糊评价方法计算根节点事件的先验概率,引入动态贝叶斯网络推算其后验概率;随后,基于层次分析法和Borda的原理,建立气化炉故障的综合风险评估体系,并引入维修因素,预测维修后气化炉的风险趋势并绘制了动态风险矩阵。结果表明,引入维修因素后系统整体风险水平显著下降,证明了维修因素对系统的积极作用,保障了系统的生产能力。
针对偏心双螺杆挤出机自身结构存在的局限性,设计了一种新型偏心三螺杆挤出机。利用Polyflow软件,分析了压力场、剪切速度场、速度矢量场、混合指数、分离尺度、平均混合效率、对数拉伸率等参数;研究了偏心三螺杆挤出机的流动和混合机理,并与偏心双螺杆挤出机进行了对比分析。结果表明,在相同的条件下,偏心三螺杆挤出机拉伸折叠效果更好,混合效率高于偏心双螺杆挤出机,为进一步探究混沌混合机理和优化偏心多螺杆挤出机提供了理论依据。
对有领导者的异构离散多智能体系统的最优一致性问题,提出了一种无模型的基于非策略强化学习的控制协议设计方法。由于异构多智能体系统的状态矩阵不同,其局部邻居误差的动态表达式比较复杂。与现有的多智能体系统分布式控制方案相比,所提算法减少了计算的复杂性。首先,建立由增广变量构造的多智能体系统全局邻居误差动态表达式。其次,通过二次型形式的值函数得到耦合贝尔曼方程和Hamilton?Jacobi?Bellman(HJB)方程。再次,求解耦合HJB方程的最优解,得到多智能体最优一致性的纳什均衡解,并给出纳什均衡证明。从次,基于无模型的非策略Q学习算法,求解多智能体最优一致性的纳什均衡解。最后,利用批判神经网络结构,结合梯度下降法实现了所提出的算法,并通过仿真实例验证了算法的有效性。
研究了多航天器系统在执行器和传感器故障作用下的编队包含协同控制问题。首先,对航天器的轨道动力学系统进行建模,并进行线性化处理;其次,设计自适应广义观测器,以获得系统状态以及执行器和传感器故障的估计值;再次,通过调整非奇异矩阵,提高观测器性能,使观测器误差收敛到原点附近;从次,基于估计的系统状态和执行器故障,设计了编队包含控制器,并利用Lyapunov理论分析得到编队误差和观测器误差收敛的充分条件;最后,通过仿真实例验证了所设计算法的系统性能。
针对多无人机编队系统,采用了内外环控制策略。首先,在考虑通讯时延和有界外部干扰的情况下,针对位置子系统提出了一种基于记忆事件触发机制的滑模控制方法。针对所建立的无人机二阶模型,采用领航?跟随法实现期望飞行编队。其次,为降低编队过程中的通讯负荷,设计了基于输入反馈和跟踪误差的新型自适应记忆事件触发机制,针对由此产生的输入通讯时延和系统所受的外部干扰问题,设计了滑模控制器,保证了控制性能并抑制了通讯时延和有界干扰的影响。再次,应用Lyapunov理论和 H∞ 控制理论完成了闭环系统稳定性证明,并且给出了便于滑模控制器增益和触发参数求解的策略。从次,基于所获得的虚拟控制量,针对姿态子系统设计了跟踪控制器。最后,通过仿真验证了所提方法的有效性。
随着网络化电力系统复杂程度越来越高,传统的控制方案很难满足实际需求,带宽受限、网络安全,以及执行器饱和等问题成为影响电力系统稳定性的重要因素。针对带宽资源受限问题,引入改进的事件触发机制以提高带宽资源的利用率;同时,构造欺骗攻击和执行器饱和下的电力系统新的数学模型;基于该系统模型,根据Lyapunov理论推导出电力系统稳定的充分条件,并利用线性矩阵不等式(LMI)技术,给出安全控制器的设计方案;最后,通过一个电力系统实例来说明所提方案的有效性。