愈创木酚常被用作木质素(自然界储量最丰富的可再生芳香族资源)催化研究的模型化合物。 然而,由于其结构复杂存在多种反应可能性,催化愈创木酚加氢脱氧反应不易获得良好的活性和选择性。迄今为止,研究人员为寻求突破,在催化剂开发和反应工艺优化方面做了大量工作。 综述了近年来用于愈创木酚加氢脱氧反应的过渡金属催化剂和贵金属催化剂的研究进展,并对反应路径和影响催化性能的因素进行了讨论,重点关注了愈创木酚经过CAR-O断裂和芳环饱和转化为苯酚或环己醇的研究。 此外,还对今后催化剂改进和反应工艺探索的研究方向进行了展望。
以硝酸铁为铁源,通过浸渍法制备Fe?C3N4复合材料。采用FT?IR对Fe?C3N4材料进行了表征分析。结果表明,Fe掺杂不改变g?C3N4的骨架结构,可以增加g?C3N4材料的光催化性能。以橙黄II为目标污染物,在可见光下Fe?C3N4催化活化过硫酸钠降解偶氮染料,考察了过硫酸钠物质的量、Fe?C3N4质量浓度、橙黄II质量浓度及pH对降解效果的影响,并对反应进行了动力学研究,分析了所制备的催化材料的稳定性。结果表明,在Fe?C3N4质量浓度为2.0 g/L、过硫酸钠与污染物物质的量比为1 200∶1和pH=3的条件下,降解效果最好,降解率为77.8%;Fe?C3N4/过硫酸钠体系对偶氮染料的降解满足准二级动力学方程;Fe?C3N4材料具有可重复利用性。
研究了2?乙基?2?芳基?二氢喹啉衍生物的合成方法。合成分成三步:第一步,2?溴喹啉与苯硼酸进行Suzuki交叉偶联;第二步,进行卤锂交换;第三步,有机锂试剂在2?苯基喹啉的α位进行亲核加成,得到双取代二氢喹啉衍生物。通过此方法合成了具有二氢喹啉结构的药物,并通过各种表征手段对目标产物进行了分析,确认了目标产物的结构。
海洋环境下的油气管道(X52管线钢)极易受到腐蚀的影响。采用电化学测试技术,并通过观察腐蚀形貌的方法,分析了海洋环境下溶解氧质量浓度、pH、静水压力对X52管线钢腐蚀行为的影响。结果表明,随着环境pH的升高,X52管线钢腐蚀减缓;随着溶解氧质量浓度和静水压力的升高,X52管线钢腐蚀加剧。在不同条件下,X52管线钢的腐蚀行为受阳极活化溶解控制,并且出现局部点蚀现象。
通过对WO x /SiO2催化剂载体的筛选和WO x 负载量的考察,成功筛选出一种性能优异的国产SiO2载体,运用氮气物理吸附、XRD、Raman光谱和TEM/EDS对催化剂结构进行表征,考察了WO x 物种在载体上的分散情况和乙烯与丁烯歧化制丙烯的催化反应性能,并与国外某商业催化剂的性能进行了对比。结果表明,当国产载体S?SiO2的WO x 负载量阈值为8%时,催化剂显示出最佳催化活性和选择性;与商业催化剂的催化性能相比,其催化活性高近10%,且稳定性和选择性相当;关联结构表征结果证实,WO x 物种在载体上的分散特征是影响催化性能的关键因素,SiO2载体和负载量也是影响WO x 物种分散状态的关键。本研究可为高效烯烃歧化反应WO x /SiO2催化剂的国产化,尤其是国产SiO2载体的选择提供依据。
降凝剂可以有效地改善生物柴油的低温流动性,采用溶液聚合法制备了甲基丙烯酸十六酯、甲基丙烯酸羟乙酯和马来酸酐的共聚物(AHM),并考察了AHM对生物柴油降凝效果的影响。采用红外光谱(IR)对甲基丙烯酸十六酯和AHM进行了表征。通过单因素实验的方法确定了AHM的最佳反应条件:n(甲基丙烯酸十六酯)/n(甲基丙烯酸羟乙酯)/n(马来酸酐)=2∶1∶2,引发剂质量分数为3.0%,溶剂质量分数为65%,反应时间为3 h,反应温度为85 ℃。当AHM质量分数为0.7%时,生物柴油的凝点降低12 ℃。采用偏光显微镜观察了加入降凝剂后生物柴油在低温下析出的蜡晶形态,其形态更加均匀致密。
模拟海底高压低温条件合成较高饱和度的天然气水合物,以多级降压模式开采天然气水合物作为空白组,研究了多级降压+注醇类、多级降压+注无机盐类以及不同质量分数化学剂对天然气水合物分解和开采效率的影响。同时,根据实验结果,优选了分解效率最优的化学剂。结果表明,多级降压+注化学剂开采天然气水合物比纯多级降压模式能有效提高瞬时产气速率,且提高整体分解效率;在多级降压+注醇类模式中,多级降压+注30%乙二醇模式性能最佳,与纯多级降压模式相比,其分解效率提高51.3%,2 h内的开采效率提高67.3%;在多级降压+注无机盐类模式中,多级降压+注15%氯化钙模式性能最优,与纯多级降压模式相比,其分解效率提高47.3%,2 h内的开采效率提高60.4%。在实际开采过程中,应选择适宜的化学剂质量分数,以避免污染环境。
了解水合物沉积规律,可为深水气井干预作业方案优化及井筒内水合物防治提供思路。在气液两相流动模型的基础上,结合干预作业工具下放引起的热量交换和摩阻梯度变化,建立了干预作业下井筒压力和温度预测模型,采用迭代法对温度和压力模型耦合求解。基于水合物生长动力学模型,结合井筒温度和压力预测结果,建立水合物沉积模型,分析了干预作业下井筒内水合物沉积规律。结果表明,产量的增加导致井筒内压差升高,高产量下泥线处井筒温度较高;随着干预作业工具的下放,井筒内压力升高,但压力升高幅度逐渐减小,井口处压力的最大升高幅度约为3.0 MPa;干预作业工具直径占比小于50%时,干预作业工具直径越大,井筒压力越高;井筒泥线位置是水合物沉积堵塞高风险区域,低产井的水合物沉积速度比高产井的水合物沉积速度快;干预作业工具下放至泥线附近时井筒水合物沉积速度最快,干预作业工具直径占比50%时井筒水合物沉积速度较快。
管道中多相流动条件下的水合物生成和沉积会形成流动障碍,影响正常的油气生产和运输作业。基于水平环状流气主导体系中水合物易在气相中夹带的液滴中形成或者在管壁上生成的特点,建立管壁中不同含水率的气主导体系水合物沉积模型,分析了水平环状流中不同影响因素下的水合物沉积规律。结果表明,在水平环状流中,随着含水率和过冷度的增大,水平环状流中管壁上的水合物沉积速率逐渐增大,最大沉积速率增至原来的3倍,发生水合物堵塞的风险增大;由冷凝水生成的水合物沉积会随着时间的增加而增大。本研究可为后续相关的水合物堵塞以及水合物防治提供理论参考,具有重要的应用价值。
在多相流管输体系下,水合物浆液在流动过程中会遇到崎岖不平的地形地貌,此时采用倾斜管道显得尤为重要。因此,研究了天然气水合物浆液在倾斜管内的流动特性对堵塞管路的影响。在低温高压可视水合物实验环路上,开展了油基体系下油+天然气的水合物堵管实验,探究了初始压力、初始流量等因素对天然气水合物浆液流动和堵管时间的影响。同时,利用实时在线颗粒测试仪,对水合物生成、流动及堵管过程中水合物颗粒的微观变化进行了分析。结果表明,随着初始压力增大,天然气水合物的诱导时间、生成时间和浆液流动时间均缩短,天然气水合物堵管趋势增大;随着初始流量增大,天然气水合物的诱导时间、生成时间和浆液流动时间均延长,天然气水合物堵管趋势减小。对水合物生成至堵管的过程以及堵塞机理进行了分析。对油基体系下天然气水合物堵塞管路的研究结果表明,在油基体系下可以通过减小初始压力、增大初始流量来有效地减小天然气水合物堵塞管路的概率。研究结果可为维持和保证天然气水合物在管道中的安全流动提供理论参考及依据。
初始缺陷、工作环境会导致转轴出现不同程度的裂纹。为分析裂纹对转子系统的影响,通过Jeffcott转子动力学模型和断裂力学理论建立了裂纹转子系统的有限元模型。对不同裂纹深度、裂纹角度和不同转速进行了仿真分析,并采用机械综合故障台对部分裂纹转子进行了实验研究。结果表明,裂纹的出现使系统振动响应中出现2X等高阶倍频分量,轴心轨迹出现凹陷甚至套圈现象,振动幅值也随之变大;随着裂纹的加深,系统的不稳定性逐渐增强;裂纹倾斜角度的改变也影响系统的振动特性,45°裂纹对系统的影响最大,当转速开始加快时,系统受裂纹的影响慢慢减小,时域波形趋于平稳,轴心轨迹逐渐变回椭圆形。对实验结果与仿真数据进行对比,验证了仿真及建模的结论。
研究了火炬燃烧器管线开裂区域的破坏机理,通过对管线进行低倍宏观分析、材质分析、显微镜金相分析、扫描电子显微镜(SEM)微观形貌及能谱分析(EDS)与实验相结合的手段,找出了管线失效开裂的原因,进一步分析了敏感环境(介质)、敏感材料和应力状况对管线开裂失效造成的影响。结果表明,在一定的温度下,管线内形成H2S+CO2+H2O的酸性腐蚀环境,火炬燃烧器管线的不锈钢材质敏化严重,存在严重的晶间腐蚀;晶间腐蚀造成管壁表面晶粒剥落,产生点蚀坑,点蚀坑处又成为应力腐蚀裂纹的裂纹源;火炬燃烧器管线在制造加工、装置运行等过程中会产生一定程度的应力集中,在腐蚀介质、敏感材质和应力集中三个因素的影响下,火炬燃烧器管线会发生晶间型应力腐蚀开裂而失效。
为提高水印图像的不可见性和算法鲁棒性,通过小波变换?海森伯格矩阵?奇异值分解的方法研究了彩色图像水印算法。首先,对宿主图像和水印图像进行了彩色空间变换;然后,对载体图像进行了小波变换;最后,对低频系数进行了海森伯格矩阵?奇异值分解后嵌入水印图像。结果表明,该算法对多种攻击方式有较强的鲁棒性,嵌入水印后宿主图像不可见性好,嵌入信息能力强,具有一定的应用价值。
针对分解的分布式模型预测控制(DMPC)系统中子系统间的耦合影响所导致的通信负担重的问题,提出了一种新的基于免疫算法(IA)系统结构分解的DMPC算法。首先,采用IA算法对DMPC系统结构分解中遇到的输入分组(ICD)和输入输出配对(IOPD)问题进行求解,最大程度地减小了系统间输入输出耦合影响;然后,采用DMPC算法对分解后的系统进行分布式控制,有效地减小了子系统间的耦合,并降低了系统的通信负载问题;最后,用重油分馏化工过程进行了仿真实验,并通过与集中式模型预测控制(CMPC)的仿真结果作对比来验证了算法的有效性。