随着人类社会对清洁能源需求的持续增加,燃料电池因具有高效、安全以及应用场景广泛等优点,受到研究者们的广泛关注。其中,阴离子交换膜燃料电池因具有环境友好、可使用非贵金属催化剂以及高安全稳定性等特点展现出广阔的应用前景。作为阴离子交换膜燃料电池的核心元件,阴离子交换膜起到隔离阳极与阴极直接接触以及传导氢氧根离子等作用,对阴离子交换膜燃料电池的性能起到至关重要的作用。在阴离子交换膜发展过程中,氢氧根离子离子电导率低与离子电导率稳定性差等问题成为制约其发展的关键技术难题。此外,发展柔性阴离子交换膜对促进阴离子交换膜燃料电池的进一步商业化具有积极的作用。基于此,从聚合物分子链设计、结构优化设计、新材料合成与复合三个方面综述了近年来国内外关于柔性阴离子交换膜的研究进展。
采用溶胶凝胶法制备了n(Ag+)/n(Ti4+)分别为0.001、0.003、0.005、0.010、0.030和0.050的Ag掺杂的粉体及陶瓷空心微珠负载TiO2光催化剂;通过SEM、XRD和Uv?Vis DRS等手段对所制备的催化剂进行了表征分析,并以氙灯为光源对其光催化性能进行了测试;结合第一性原理,对掺杂机理进行了分析。结果表明,0.005Ag?TiO2粉体在90 min光催化测试中对10 mg/L亚甲基蓝的降解率为76%,最佳n(Ag+)/n(Ti4+)为0.005,陶瓷空心微珠负载型催化剂90 min光催化测试的降解率为97%;Ag掺杂能够在TiO2体系中引入杂质能级,使价带电子可以通过分级跃迁的方式到达导带,计算结果与实验结果的变化趋势相一致。
为了探索具有工业化发展前景的石墨烯增强复合材料制备工艺,采用熔融共混法制备了石墨烯/聚丙烯复合材料,并通过实验与计算分析了石墨烯的增强机制。结果表明,通过熔融共混,石墨烯可在基体中均匀分散;当石墨烯质量分数为0.5%时,复合材料的拉伸强度为50.3 MPa;当石墨烯质量分数为4.0%时,复合材料的弹性模量和拉伸强度比聚丙烯基体分别增加了77.1%和22.5%;石墨烯的均匀分散及石墨烯与聚丙烯基体之间存在的相互作用使石墨烯/聚丙烯界面可实现有效的应力传递。
质轻、高强的碳纤维增强环氧树脂基复合材料在航空航天、交通运输、能源等领域中得到广泛的应用。界面组成及结构是影响碳纤维复合材料物理化学性能的主要因素,碳纤维表面改性是增强碳纤维复合材料界面性能与力学性能最有效的途径之一。近年来的研究结果表明,比表面积较大、结构多样的多孔材料可以提高碳纤维的表面能和表面粗糙度,能够改善复合材料的界面性能。对近些年用不同种类的多孔材料改性碳纤维的研究成果进行了简单介绍,并总结了其对碳纤维复合材料的界面增强效果,以期为未来多孔材料增强碳纤维复合材料的研究提供参考。
超疏水材料由于表面特殊的润湿特性,成为近年来涂层方向的研究热点之一,其在防结冰、自清洁、减阻等方面具有广泛的应用前景。采用溶胶凝胶法,以纳米二氧化硅(SiO2)、硬脂酸(SA)和聚苯硫醚(PPS)为原料,在纺织布表面制备了分布均匀、厚度约为38 μm的SA?SiO2/PPS超疏水涂层;通过扫描电子显微镜(SEM)对形貌进行分析,并测试了样品涂层的性能;采用分子动力学(MD)模拟分析了样品涂层的微观性质。结果表明,56%SA?SiO2/30%PPS涂层的水接触角为154.8°,表现出良好的自清洁性、耐腐蚀性和耐皂洗性;材料具有微纳米多尺度的粗糙结构,SA分子与SiO2表面通过氢键连接,MD模拟结果与实验数据一致,并从微观角度验证了制备涂层的耐腐蚀性。
采用生物降解高分子材料聚己二酸/对苯二甲酸丁二醇酯(PBAT)增韧聚乳酸(PLA),制备了全生物降解高抗冲PLA/PBAT复合材料;为改善PBAT与PLA之间的界面相容性,采用熔融接枝的方法制备了PBAT接枝甲基丙烯酸缩水甘油酯(GMA)(PBAT-GMA)相容剂;研究了相容剂质量分数对PLA/PBAT复合材料性能的影响。结果表明,随着PBAT-GMA质量分数的增加,复合材料的冲击性能大幅提高;当PBAT-GMA质量分数为30%时,复合材料的冲击强度达到64.8 kJ/m2,断裂伸长率为289.9%;PBAT-GMA上的环氧基团与PLA的端基发生反应,可有效改善PLA与PBAT之间的界面相容性。
通过简单的一锅共沉淀法,以双氰胺、葡萄糖和硝酸钴为原料,最终获得了Co@CNT/CN纳米复合材料;利用X射线衍射(XRD)、电化学测试等手段,研究了碳纳米管(CNTs)对Co单质催化活性的影响。结果表明,Co@CNT/CN纳米复合材料可以在煅烧温度为850 ℃的条件下得到;具有碳纳米管的Co@CNT/CN材料存在特殊的导电性,可促进Co单质的分离,降低团聚现象的发生,从而获得较高的电催化活性,其电催化活性明显高于其他样品。
为了改善橡胶粉与基质沥青的相容性,采用微藻生物油(MB)对橡胶粉进行改性,并与质量分数为5%的苯乙烯?丁二烯?苯乙烯(SBS)复合制备了改性沥青;通过红外光谱和扫描电子显微镜,分析了橡胶粉改性前后的变化;采用黏度、荧光、相分离测试,分析了改性前后橡胶在沥青中的分散性;通过动态剪切流变和多重应力蠕变恢复试验,分析了改性沥青的力学性能和耐老化性能。结果表明,MB的掺入提高混合体系中轻组分占比,促进胶粉(CR)在沥青中的溶胀发育,提高了改性沥青的贮藏稳定性、黏弹性和抗车辙性。
利用密度泛函理论(DFT)和波函数分析方法,从理论上探讨了三维碳球的光学性质。研究了紫外?可见光(Ultraviolet?visible, UV?vis)吸收光谱中的电子跃迁机制;通过跃迁密度矩阵图(Transition Density Matrix,TDM)和电荷差分密度图(Charge Density Difference, CDD),研究了三维碳球的电子激发特性;对拉曼(Raman)光谱进行了计算,并进一步解释了三维碳球的振动模式;利用静电势(Electrostatic Potential,ESP),研究了三维碳球与外界环境的相互作用;基于外加磁场下的磁感应电流,研究了三维碳球的电子离域程度。结果表明,三维碳球的吸收光谱主要在紫外光区域,并且有较强的电子离域能力。研究结果可为其他三维π共轭分子结构在线性光学和非线性光学中的应用提供理论基础。
以多金属氧酸盐(POMs)中的[Mo4O10(CH3O)6]2-为无机建筑块、1,2-双(二苯基膦)乙烷(DPPE)为有机配体、硝酸银为银源,采用溶剂热法和常规合成法相结合的合成方法,通过自组装的方式制备了一种新的有机-无机杂化材料[Ag(DPPE)2]2[Mo4O10(CH3O)6]·2CH3OH(1)。X-射线单晶衍射分析结果表明,化合物1是由同多阴离子[Mo4O10(CH3O)6]2-和[Ag(DPPE)2]+阳离子单元通过静电作用结合而形成的。此外,对化合物1进行了X-射线粉末衍射、傅里叶红外光谱等结构分析,并通过热重分析确定其稳定性,通过固体紫外-可见漫反射测试了其禁带宽度以及甲醇溶液中的荧光光谱。结果表明,化合物1具有良好的光电流响应特性。
采用双螺杆挤出机制备了玻璃纤维(GF)增强尼龙6(PA6)复合材料,系统地研究了GF质量分数对PA6/GF复合材料的力学性能、热性能、密度、吸水性和加工流动性的影响。结果表明,PA6/GF复合材料的冲击强度、拉伸强度、弯曲强度、弯曲模量、密度和热变形温度均随着GF质量分数的增加而增加,而吸水率和熔融指数随着GF质量分数的增加而减小。形态结构显示,当GF质量分数为30%时,GF在PA6基体中得到了有效的包裹和分散。
Mg2+作为一种电化学惰性的阳离子,由于其离子半径(0.072 nm)与Li+的离子半径(0.076 nm)相近,因此被广泛应用于取代富锂层状氧化物(LLOs)材料中Li+的位置。然而,Mg2+对LLOs材料晶体结构的影响还存在争议。利用溶胶凝胶法成功制备了一系列Mg2+掺杂富锂正极材料Li1.2-x Mg x Mn0.54Ni0.13Co0.13O2,通过X射线衍射仪和X射线光电子能谱等对其晶体结构和元素价态进行了系统的研究。结果表明,Mg2+掺杂导致LLOs材料晶胞参数的增加。通过与Li1.2Mn0.54Ni0.13Co0.13O2材料的电化学性能对比发现,Mg2+掺杂有效地提高了LLOs材料的电化学性能。经过优化后,Mg?0.03样品展现出最优异的电化学性能,在0.1 C倍率下的初始放电比容量为291.9 mA?h/g,首圈库伦效率为78.40%。
采用溶胶凝胶法合成一种Ruddlesden?Popper(R?P)型富钴的新型层状钙钛矿型阴极材料La1.5Ca0.5Ni0.2Co0.8O4+δ (LCNC),并进行了电化学性能测试。结果表明,LCNC在空气中400~800 ℃下的电导率为4~58 S/cm,优于多数SOFC阴极材料;在800 ℃下测得对称电池LCNC|LSGM|LCNC的极化阻抗为0.16 Ω·cm2,该电极基于300 μm厚La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM)支撑的单电池的最大功率密度为527 mW/cm2,且连续工作50 h后单电池性能仅略微衰减;LCNC是一种具有潜力的SOFC阴极材料。
以溶胶?凝胶法制备锂离子电池Li2ZnTi3O8(LZTO)负极材料,考察退火温度和退火时间对LZTO电化学性能的影响,得到了最佳工艺条件:退火温度为700 ℃,退火时间为3 h。在最佳工艺条件下制备的LZTO中添加络合剂柠檬酸进行了改性。结果表明,当金属离子与柠檬酸的物质的量比为2.00∶1.50时,制备的样品LZTO?2/1.50颗粒小、分散均匀,表现出良好的电化学性能;当电流密度为0.5 A/g时,恒流充放电300次后放电比容量为203.6 mA·h/g。
通过改变Ba2FeMoO6-δ (BFM)中Fe与Mo的物质的量比调控双钙钛矿晶格B位有序性,制备了一种高性能新型SOFC双钙钛矿阳极材料Ba2Fe1.3Mo0.7O6-δ (BFM0.7)。结果表明,BFM0.7在H2中600~800 ℃的电导率为15.0~20.0 S/cm,远高于SOFC电极的最低标准(0.1 S/cm)。BFM0.7用作SOFC阳极时,单电池在850 ℃的最大功率密度和极化阻抗分别为1 149 mW/cm2和0.15 Ω·cm2。相比于BFM阳极,BFM0.7的性能显著提高。此外,BFM0.7阳极电池连续工作39 h性能无衰减,表明BFM0.7阳极具有优异的电化学稳定性。
单层双面神结构过渡金属硫化物具有低维度、高迁移率以及奇特的电子结构性质,因此其在电子学和光电子学器件方面具有潜在的应用前景。由单层双面神结构过渡金属硫化物和基底材料制成的器件,很容易因基底材料和单层双面神结构过渡金属硫化物的晶格失配,导致单层双面神结构过渡金属硫化物受基底材料的应力,因此通过拉曼散射系统研究双轴应变对单层双面神结构MoSSe物性的影响具有重要意义。系统研究了双轴调控下单层双面神结构MoSSe的原子结构、电子结构、声子结构和拉曼散射特性。结果表明,在双轴应变调控下,单层双面神结构MoSSe的电子能带带隙出现了直接与间接的转换;随着压应变的减小和拉应变的增加,3个拉曼特征峰(E1、E2、A 1 1 )的频率都发生了单调红移,而A 1 2 的拉曼特征峰在压应变减小的过程中出现了反常的蓝移;随着压应变的减小和拉应变的增加,双重简并模式(E1、E2)的拉曼强度单调增加,单重简并模式的拉曼强度单调减小,而A 1 1 的拉曼强度先减小再增加。针对这些具有普遍性和特殊性的应变效应,通过建模进行了研究。结果表明,基于特征峰频率和强度随应变的变化差异,可以通过特征峰之间的频率差和强度比,快速定量化双面神结构材料的应变类型和大小。
手性分子与等离激元的相互作用对调控手性修饰纳米结构的圆二色性(CD)起着至关重要的作用。然而,手性分子与金属直接发生相互作用时容易引发团聚,从而影响其光学特性。利用溶胶凝胶法在实验上合成了一种带有手性分子的核壳结构(Au@molecule@SiO2),该结构由于SiO2壳层的存在使颗粒在保留分子及金属特性的同时又具有很好的稳定性。通过测量具有对映手性分子的结构(Au@molecule@SiO2)的紫外?可见吸收(UV)光谱和CD光谱,发现Au纳米颗粒(Au NPs)的等离激元共振位置(530 nm)具有手性分子诱导的CD信号。为了探究其内在物理机制,利用Mie理论进一步解释了530 nm处诱导的CD信号的来源,其主要来自手性核壳结构中电偶极子和磁偶极子的相互作用。该研究可为手性核壳结构的研究提供实验参考和有效的理论框架。
以Cu2+为中心离子、4, 4'?联吡啶(4,4'?bipy)为辅助配体,通过水热反应得到一个单核Cu配合物Cu0.5(4,4'?bipy)(H2O)·L·0.5(4,4'?bipy)·2H2O(1) (NaL=3?羟基苯磺酸钠)。采用X?射线单晶衍射、元素分析以及红外光谱表征了其结构和组成。结果表明,Cu2+是六配位,呈扭曲的八面体配位构型,与四个4,4'?bipy分子的氮原子以及两个H2O分子的氧原子配位;L2-只平衡化合物1中的正电荷,不与Cu2+配位;Cu2+与4,4'?bipy和H2O分子配位形成方格形层状结构[Cu(4,4'?bipy)2(H2O)2]2+,L2-的羟基以及游离的H2O分子分别与层状结构中的H2O分子形成氢键,提高了水分子的热稳定性;化合物1的荧光发射在409 nm,为配体内荧光发射;与NaL配体相比,发生轻微红移,可能是4,4'?bipy配体与Cu2+配位作用所致。
拥有高导热性的金属纳米材料是强化气体水合物生成的理想促进剂,金属纳米材料包括金属基纳米颗粒、金属氧化物和类金属氧化物。针对不同种类金属纳米材料促进气体水合物生成的影响进行了综述,分别从金属纳米材料的浓度、粒径以及表面性质三个方面对水合物生成的诱导时间和气体消耗量等参数的影响进行了介绍。结果表明,金属基纳米颗粒的传热效果较好,部分金属氧化物和类金属氧化物对气体水合物的生成具有抑制作用;添加适量的金属纳米材料的浓度和粒径对水合物的生成有重要的影响;此外,金属纳米材料与化学试剂复配可明显提升纳米颗粒的分散稳定性,进而促进水合物的高效生成。
以膨胀蛭石为支撑材料,真空浸渍癸酸?月桂酸二元相变材料,合成了癸酸?月桂酸/膨胀蛭石复合相变储热材料;采用红外光谱仪、扫描电镜、热分析仪、差示扫描量热仪及热循环实验,对癸酸?月桂酸/膨胀蛭石复合相变材料的化学兼容性、微观形貌、稳定性、热物性及可靠性进行了分析。结果表明,癸酸?月桂酸/膨胀蛭石复合相变储热材料的融化和凝固相变温度分别为18.42 ℃和17.51 ℃,相变潜热分别为66.9 J/g和62.9 J/g;膨胀蛭石中癸酸?月桂酸的装载量可达52.97%,在工作温度范围内具有良好的热稳定性。此外,用癸酸?月桂酸/膨胀蛭石复合相变材料按一定比例替代细砂制备癸酸?月桂酸/膨胀蛭石基储能砂浆,对其力学及调温特性进行了研究。结果表明,癸酸?月桂酸/膨胀蛭石基储能砂浆具有应用于节能建筑的较大潜力。
质子传导材料是传感器和燃料电池的重要组成部分,近年来人们对晶态质子传导材料的研究主要集中在金属有机框架材料(MOF)方面。镧系金属有机框架(Ln?MOF)是MOF家族的重要一员,镧系离子因具有较强的配位能力、路易斯酸性和复杂的功能性,容易形成稳定的多样性骨架。对主体骨架中引入不同功能性酸基团(羧酸、膦酸或磺酸基团等)的Ln?MOF材料在质子传导方面的研究进展进行综述,并对Ln?MOF材料在质子传导研究中面临的挑战做出展望。
以纳米TiO2为添加相,按一定比例添加B2 O3和H3BO3,采用高能球磨和粉末冶金法相结合的方法制备了体积分数为4%的纳米氧化物粒子增强Al基复合材料,最后在723 K的条件下以16∶1的挤压比制备了复合材料棒材。结果表明,经过4 h的球磨后,可以实现纳米氧化物在Al基体中的弥散分布;经过893 K的真空热压后,添加相与Al基体发生原位化学反应并生成了Al2O3等。当Ti与B物质的量比为1.0∶1.5时,复合材料的力学性能最优;同时,当B元素的先驱体化学成分不同时,复合材料的力学性能差异显著;TiO2+H3BO3/Al在室温和623 K下的拉伸强度分别为507.7 MPa和151.3 MPa,展现出最高的室温力学性能;TiO2+B2O3/Al在室温和623 K下的拉伸强度分别为353.7 MPa和167.1 MPa,展现出最佳的高温力学性能。
固体氧化物燃料电池(SOFC)作为一种能量转换装置,因其清洁高效的工作方式,受到了社会各界的广泛关注和重视。阳极是SOFC的重要组成部分,寻找具有良好燃料催化活性的阳极材料是SOFC领域材料研究的重点工作。近年来,钼酸盐基钙钛矿材料作为SOFC阳极,在中低温区显示了优异的电导率和电化学性能,受到了国内外众多课题组的广泛关注。综述了钼酸盐基钙钛矿作为SOFC阳极的研究进展,从理论和实验的角度总结了不同掺杂情况对材料性能的影响,为今后材料的相关研究提供指导性的意见。
以层状结构的钛酸盐HTO(H4x/3Ti2-x/3□ x/3O4?nH2O)为原料,采用水热的方法合成了金红石型介观TiO2晶体。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等测试手段,研究了反应温度对利用拓扑结构转变方式合成的金红石型介观TiO2晶体材料的影响。结果表明,金红石型TiO2晶体材料可以在反应体系pH为0.5的条件下得到,当反应温度升高到120 ℃时,形成了金红石型介观TiO2晶体材料。以罗丹明B(RhB)为污染物模型进行了降解实验。结果表明,120 ℃时金红石型介观TiO2晶体材料的光催化活性明显高于其他样品,主要是由于介观晶体具有较为特殊的电子传导特性,有助于电子与空穴的分离。染料敏化太阳能电池(DSSCs)实验结果表明,120 ℃时所形成的介观晶体结构有助于光生载流子的快速迁移,从而获得较高的电池特性。
静电纺丝是一种使聚合物在高压静电场作用下进行拉伸纺丝的纤维制造工艺。静电纺丝制备方法简单,成本低且易纺出微纳米级的纤维,在材料化学领域被广泛应用。采用硫杂杯芳烃构筑的多硫高核笼簇化合物(Co48)为负载物,以聚丙烯腈(PAN)和聚甲基丙烯酸甲酯(PMMA)共混物(PAN/PMMA)为纺丝载体,通过静电纺丝技术,制备了负载Co9S8纳米颗粒的碳纳米纤维(Co9S8@CNFs)。分别以PAN和PMMA质量比为10∶0、7∶3和5∶5的纺丝载体制备复合物纳米纤维,将其热处理后得到的碳纳米纤维复合材料作为电极材料用于锂离子电池材料的研究。与Co48晶体煅烧的产物相比,PAN和PMMA的加入对最终产物的电化学有促进作用。由PAN和PMMA混合物制备的复合物材料兼具较高比容量、良好循环稳定性以及倍率性能。
以β?环糊精(β?CD)为单体、环氧氯丙烷为交联剂,在碱性介质中合成了Fe3O4改性的β?环糊精聚合物(β?CDP@Fe3O4)。在静态和动态条件下,研究了β?CDP@Fe3O4对双酚A (BPA)的吸附性能。静态实验结果表明,采用0.10 g β?CDP@Fe3O4对100 mg/L BPA(pH=5.6)吸附,其平衡吸附量为45.600 mg/g,吸附率为91.3%,饱和吸附量为113.600 mg/g。动态实验结果表明,液时空速越小,吸附剂利用率越高,且随着BPA质量浓度的增加,吸附穿透时间和饱和时间均呈下降趋势。同时,探讨了β?CDP@Fe3O4的合成及吸附机理。β?CDP@Fe3O4对BPA的快速吸附是通过氢键和疏水作用实现的。β?CDP@Fe3O4具有良好的再生性能,经过6次静态吸附?解吸循环和3次动态吸附?解吸循环后,吸附性能均无明显变化。
通过对WO x /SiO2催化剂载体的筛选和WO x 负载量的考察,成功筛选出一种性能优异的国产SiO2载体,运用氮气物理吸附、XRD、Raman光谱和TEM/EDS对催化剂结构进行表征,考察了WO x 物种在载体上的分散情况和乙烯与丁烯歧化制丙烯的催化反应性能,并与国外某商业催化剂的性能进行了对比。结果表明,当国产载体S?SiO2的WO x 负载量阈值为8%时,催化剂显示出最佳催化活性和选择性;与商业催化剂的催化性能相比,其催化活性高近10%,且稳定性和选择性相当;关联结构表征结果证实,WO x 物种在载体上的分散特征是影响催化性能的关键因素,SiO2载体和负载量也是影响WO x 物种分散状态的关键。本研究可为高效烯烃歧化反应WO x /SiO2催化剂的国产化,尤其是国产SiO2载体的选择提供依据。
降凝剂可以有效地改善生物柴油的低温流动性,采用溶液聚合法制备了甲基丙烯酸十六酯、甲基丙烯酸羟乙酯和马来酸酐的共聚物(AHM),并考察了AHM对生物柴油降凝效果的影响。采用红外光谱(IR)对甲基丙烯酸十六酯和AHM进行了表征。通过单因素实验的方法确定了AHM的最佳反应条件:n(甲基丙烯酸十六酯)/n(甲基丙烯酸羟乙酯)/n(马来酸酐)=2∶1∶2,引发剂质量分数为3.0%,溶剂质量分数为65%,反应时间为3 h,反应温度为85 ℃。当AHM质量分数为0.7%时,生物柴油的凝点降低12 ℃。采用偏光显微镜观察了加入降凝剂后生物柴油在低温下析出的蜡晶形态,其形态更加均匀致密。
采用H4x/3Ti2-x/3□ x/3O4·nH2O(HTO)为前驱体原料,通过水浴浸渍的方式在HTO的表面负载纳米级氧化钛颗粒(ST01),采用焙烧的方法拓扑合成TiO2同质结构复合材料。利用X射线衍射(XRD)、拉曼光谱(Raman)等测试手段,详细研究了焙烧温度对TiO2相变过程的影响。结果表明,HTO随着温度的升高逐渐由单斜结构的TiO2(B)转变成锐钛矿结构,再转变至金红石结构,且形成多种不同结构、组成的TiO2同质复合体材料。以罗丹明B(RhB)为污染物模型进行降解实验,600 ℃时样品的光催化活性明显高于其他样品,主要是由于此时样品的电子与空穴分离效率较高,说明同质复合体TiO2结构和组成影响了其光催化活性。此外,染料敏化太阳能电池(DSSCs)实验表明,600 ℃时样品的光电性能较高,其原因是二维片状形貌有助于光生载流子的快速迁移。
单层Janus MoSSe拉曼光谱中出现的双共振峰,是材料特征的重要指纹。但是,这些双共振峰尚存在起源理解不清、机制亟需澄清的问题。基于密度泛函理论、量子高阶微扰理论和群论分析,系统研究了单层Janus MoSSe的双共振拉曼光谱。研究发现,单层Janus MoSSe的电?光共振耦合过程的倒格子波矢依赖于激光能量,在第一布里渊区中任意波矢 qvec都可能出现。基于群论分析,推导出产生双共振拉曼活性的对称性条件,并阐明了在Janus结构体系中出现大量双共振拉曼峰的根本原因。研究结果可为理解二维Janus结构体系中发生的双共振拉曼过程提供理论指导,并为澄清双共振拉曼峰的起源提供合理的理论手段。
温室效应日渐显著,CO2的捕集与储存(CCS)是一种潜力巨大的减排措施,其中吸附法捕集CO2是最有前景的技术之一。多孔固体材料因其优异的CO2吸附性能备受关注。针对吸附法脱除CO2的研究进行综述,介绍了五种不同的吸附材料,总结了影响它们吸附CO2的主要因素,以及改性后材料的吸附性能。结果表明,温度、压强、孔结构的改变会影响材料的物理吸附性能;还原改性、氧化改性和金属离子负载改性能够改变材料表面官能团的种类或者数量,提高了材料的CO2吸附性能。
近年来,随着纳米技术和油田开发技术的不断发展,纳米材料已经被广泛应用于堵水调剖剂中,并取得了不同程度的发展。分别从泡沫、聚合物凝胶、乳液和超细水泥浆四个方面综述了纳米材料在堵水调剖剂中的研究进展和最新成果,并分析了纳米材料在堵水调剖剂中的作用机理及其影响规律。结果表明,在体系中加入纳米材料后,可凭借其尺寸小、表面积大等物理化学特性,与堵水调剖剂发生界面吸附、插层、剥落等相互作用,使堵水剂的稳定性、强度和耐温耐盐性显著提升,从而有效提高堵水率和油田采收率。此外,从堵水剂研发的角度指出了目前这方面研究存在的各种问题,以期对纳米材料在堵水调剖剂中的研究和应用提供参考。
随着人机交互、电子皮肤、可穿戴电子等新兴领域的迅速发展,作为核心部件之一的柔性应变传感材料成为人们关注的热点。由导电材料与柔性高分子复合而成的导电高分子基复合材料具有柔韧性好、质轻、易加工成型等优势,且材料导电性能在应变刺激下发生改变,因此可用作柔性应变传感材料。综述了基于导电高分子复合材料的柔性应变传感材料的分类及特点,详细介绍了该类传感材料的应变响应机理,并总结了影响导电高分子复合材料应变传感性能的因素。
用煤基混合烯烃分离出的C12-C16烯烃馏分为原料,在氮气保护下用AlCl3催化聚合,研究聚合温度、聚合时间、聚合压力及催化剂质量对聚α烯烃合成油收率的影响,确定最佳聚合反应条件,并对产物进行物性分析。结果表明,冷阱油中C12-C16烯烃的蒸出温度在214~274 ℃。在聚合温度为137 ℃、聚合时间为40 min、聚合压力为4.0 MPa和催化剂质量为10 g的条件下,聚合反应收率为84.57%,所得聚α烯烃合成油在40 ℃时的运动黏度为32.53 mm2/s,闪点为221 ℃,凝点为-53 ℃,溴值为9.6 g(Br)/(100 g)。
室温磷光性有机物由于三重态激子的参与和相对较慢的衰变速率,使其具有较长波长及长寿命的特性,让该类型化合物在光学器件、光催化反应、生物成像等领域中具有广泛的应用前景。目前构筑室温磷光有机体系主要是通过促进自旋轨道耦合和抑制三重态到基态的非辐射衰变来完成。对近年来室温磷光有机体系的发展进行归纳和总结,针对如何设计室温磷光有机体系提出了几种方法,并分析其原理,对未来室温磷光有机体系的发展与应用进行了展望。
水的污染越来越严重,利用太阳光光催化降解水中的污染物在未来的发展中具有非常重要的作用。通过简单的化学沉淀法,将CNTs复合到Bi12O17Cl2表面上,得到一系列CNTs/Bi12O17Cl2复合材料,并用XRD、TEM、UV?vis DRS和PL表征方法对催化剂的结构特点、形貌特征和光学性质等方面进行了测量表证。结果表明,对比单一相Bi12O17Cl2,CNTs/Bi12O17Cl2复合材料表现出优异的降解污染物的活性、良好的光催化稳定性能和循环性能。通过捕获实验,发现超氧自由基(·O 2 - )与空穴(h+)是主要的活性物种,并推测其降解反应的可能机理。这项研究为提高催化剂的光催化性能提供了一种廉价、简便的改性方法,对其他高效光催化剂的合成具有一定的指导作用。
石油树脂废水污泥属于危险废物,通过污泥主要成分分析,提出污泥资源化途径,研究其对磷的吸附条件及效果。结果表明,石油树脂废水污泥含有较多的苯、萘、茚、薁、烯烃、烷烃等石油类污染物,污泥经600 ℃煅烧后,减量化程度达到82.5%,得到以γ?Al2O3为主的吸附材料;煅烧污泥对磷的最佳吸附条件:吸附时间为90 min,振荡强度为180 r/min,pH为4,初始磷质量浓度为12.5 mg/L,煅烧污泥质量为2.0 g。在最佳吸附条件下,吸附率为93.8%,污泥再生后对磷吸附率为87.0%。因此,石油树脂废水污泥经过煅烧处理后,可实现危险废物的减量化和资源化。
研究了3种不同型号的碳纳米管(MW、LMW和SW)的胆红素吸附性能。X射线衍射(XRD)谱图显示,3种碳纳米管的管径大小排序为LMW>MW>SW。扫描电子显微镜(SEM)和比表面积测试(BET)结果表明,MW型分散性最好,且具有较大的比表面积、最大的孔径和孔容。胆红素吸附实验结果表明,当温度为37 ℃、吸附时间为40 min时,碳纳米管吸附胆红素的性能最佳。当胆红素质量浓度大于0.5 g/L时,MW型碳纳米管吸附容量最大,最大胆红素吸附量达到208 mg/g。增大NaCl浓度、牛血清白蛋白质量浓度和提高pH均不利于胆红素在溶液中的吸附。与传统吸附剂相比,3种碳纳米管对胆红素均表现出吸附时间短、吸附容量大的优良性能,为后期制备碳纳米管共混微滤膜及其吸附胆红素提供了实验基础。
采用溶胶?凝胶法对多壁碳纳米管进行改性,使SnO2与MWCNTs复合并掺杂Cu离子。通过SEM、XRD、FTIR对样品M、M+Cu、M+Sn和M+Sn+Cu进行表征,分析其表面微观结构,用静态吸附法测量了不同样品对VOCs的饱和吸附量,并分别从VOCs质量浓度、温度影响等方面进行了分析。结果表明,4种吸附剂样品的饱和吸附量与VOCs质量浓度和温度呈线性相关,且二者数值越大,饱和吸附量越小;在常温(25 ℃)常压下,MWCNTs对VOCs气体的吸附量几乎为0,样品M+Cu的饱和吸附量略小于样品M+Sn,样品M+Sn+Cu的吸附效果最佳,约为M+Sn的2倍,可达37.4 mg/g。
采用溶剂热法合成了金属有机骨架材料ZIF?67,并通过扫描电子显微镜(SEM)、X?射线粉末衍射(XRD)、傅里叶红外光谱(FT?IR)以及热重(TG)对其进行表征。将合成的ZIF?67用于水中甲基橙的吸附,系统地研究了pH、吸附剂质量、甲基橙初始质量浓度、接触时间和温度对吸附性能的影响。结果表明,当ZIF?67质量为20 mg、pH为7时,吸附效果最好;在303 K下吸附25 min达到平衡;在303 K下,ZIF?67对甲基橙的理论最大吸附量为152.67 mg/g。等温吸附数据符合Langmuir等温吸附模型,吸附动力学符合准二级吸附动力学模型,该吸附过程是一个自发的放热过程。乙醇可以对吸附后的ZIF?67较好地脱附,经过6次吸附?脱附循环仍保持较好的吸附效果。
通过一步热聚合法制备纳米碳颗粒/氮化碳复合材料,利用XRD、FTIR、TEM、DRS、PL等手段对纳米碳颗粒/氮化碳进行了系统表征,并考察其光催化降解罗丹明B的光催化性能。结果表明,纳米碳颗粒的负载可以显著改善复合材料的可见光吸收能力及光生电子/空穴的分离效率,当加入纳米碳颗粒的质量为10 mg时,所得到的纳米碳颗粒/氮化碳2在20 min内对罗丹明B的降解率可以达到96.5%,明显优于纯氮化碳材料。此外,纳米碳颗粒/氮化碳复合材料还表现出良好的稳定性。