1 |
邱雪霏.基于吸收法的CO2富液解吸试验研究[D].南昌:华东交通大学,2019.
|
2 |
李爽.水滑石基吸附剂中温H2/CO2分离的试验研究[D].北京:清华大学,2016.
|
3 |
乔迎晨.老化及离子改性对ZrO2⁃SiO2气凝胶高温稳定性的影响[D].天津:天津大学,2017.
|
4 |
Deng S,Hu B,Chen T,et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption[J]. Adsorption,2015,21(1⁃2):125⁃133.
|
5 |
Wei H,Deng S,Hu B,et al. Granular bamboo⁃derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores[J]. ChemSusChem,2012,5(12):2354⁃2360.
|
6 |
Deng S,Wei H,Chen T,et al. Superior CO2 adsorption on pine nut shell⁃derived activated carbons and the effective micropores at different temperatures[J]. Chemical Engineering Journal, 2014, 253:46⁃54.
|
7 |
Sevilla M,Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science,2011,4(5): 1765⁃1771.
|
8 |
Bing X,Wei Y,Wang M,et al. Template⁃free synthesis of nitrogen⁃doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. Journal of Colloid Interface Science,2017,488:207⁃217.
|
9 |
Wang M,Wang J,Qiao W,et al. Scalable preparation of nitrogen⁃enriched carbon microspheres for efficient CO2 capture[J]. RSC Advances,2014,4(106):61456⁃61464.
|
10 |
He X,Liu J,Jiang Y,et al. ‘Useful’ template synthesis of N⁃doped acicular hollow porous carbon/carbon⁃nanotubes for enhanced capture and selectivity of CO2[J]. Chemical Engineering Journal,2019,361:278⁃285.
|
11 |
Mulgundmath V P,Tezel F H,Saatcioglu T,et al. Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite[J]. The Canadian Journal of Chemical Engineering,2012,90(3):730⁃738.
|
12 |
李涛.NaY分子筛的合成及其应用性能的研究[D].石家庄:河北科技大学, 2013.
|
13 |
Jung J Y,Karadas F,Zulfiqar S,et al. Limitations and high pressure behavior of MOF⁃5 for CO2 capture[J]. Physical Chemistry Chemical Physics,2013,15(34):14319⁃14327.
|
14 |
Bao Z,Yu L,Ren Q,et al. Adsorption of CO2 and CH4 on a magnesium⁃based metal organic framework[J]. Journal of Colloid and Interface Science,2011,353(2):549⁃556.
|
15 |
Xing W,Liu C,Zhou Z,et al. Superior CO2 uptake of N⁃doped activated carbon through hydrogen⁃bonding interaction[J]. Energy & Environmental Science,2012,5(6): 7323⁃7327.
|
16 |
马旭.粉煤灰合成A型沸石及其对CO2和CH4吸附的研究[D].重庆:重庆大学,2017.
|
17 |
简相坤,刘石彩.活性炭微结构与吸附、解吸CO2的关系[J].煤炭学报,2013,38(2):326⁃330.
|
18 |
Adhikari A K,Lin K S. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks⁃74[J]. Journal of Nanoscience Nanotechnology,2014,14(4):2709⁃2717.
|
19 |
岑旗钢.活性炭材料吸附分离烟气中二氧化碳研究[D].杭州:浙江大学,2017.
|
20 |
安崇.氨水改性活性炭用于垃圾填埋气净化的试验研究[D].郑州:河南农业大学,2018.
|
21 |
郭慧娴,李水娥,张勇,等.改性活性炭对烟气中CO2吸附性能的影响[J].湿法冶金,2020,39(2):156⁃159.
|
22 |
Tan Y L,Islam M A,Asif M,et al. Adsorption of carbon dioxide by sodium hydroxide⁃modified granular coconut shell activated carbon in a fixed bed[J]. Energy,2014,77:926⁃931.
|
23 |
周绪忠.干法吸附烟气中二氧化碳技术应用研究[D].贵阳:贵州大学,2016.
|
24 |
Singh J,Bhunia H,Basu S. Synthesis of porous carbon monolith adsorbents for carbon dioxide capture: Breakthrough adsorption study[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,89:140⁃150.
|
25 |
Vinke P,Van Der Eijk M,Verbree M,et al. Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia[J]. Carbon,1994,32(4):675⁃686.
|
26 |
Zhang Z,Xu M,Wang H,et al. Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia[J]. Chemical Engineering Journal,2010,160(2):571⁃577.
|
27 |
林俭锋,苏叶,肖静,等.Mg⁃MOF⁃74的氨改性及其吸附CO2和水蒸气性能[J].功能材料,2014,45(9):9038⁃9042.
|
28 |
陈健.金属⁃有机骨架MOF⁃74系列吸附捕集低浓度二氧化碳的研究[D].大连:大连理工大学,2016.
|
29 |
仇学伟.改性活性炭催化还原三价钴氨络合物的研究[D].上海:华东理工大学,2013.
|
30 |
叶剑波.活性炭改性及其吸附CO2/H2O性能研究[D].沈阳:东北大学,2014.
|
31 |
Zhou D,Cheng Q Y,Cui Y,et al. Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption[J]. Carbon,2014,66:592⁃598.
|
32 |
吕勇,杨魁智,段龙,等.聚乙烯亚胺改性MIL⁃101(Cr)及其吸附分离CH4/CO2特性[J].南京工业大学学报(自然科学版),2017,39(4):66⁃72.
|
33 |
刘清.胺改性工业级碳纳米管吸附分离烟道气中二氧化碳的研究[D].杭州:浙江大学,2015.
|
34 |
Su X,Bromberg L,Martis V,et al. Postsynthetic functionalization of Mg⁃MOF⁃74 with tetraethylenepentamine: Structural characterization and enhanced CO2 adsorption[J]. ACS Applied Materials & Interfaces,2017,9(12):11299⁃11306.
|
35 |
Keramati M,Ghoreyshi A A. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine[J]. Physica E:Low⁃dimensional Systems and Nanostructures,2014,57:161⁃168.
|
36 |
Rattanaphan S,Rungrotmongkol T,Kongsune P. Biogas improving by adsorption of CO2 on modified waste tea activated carbon[J]. Renewable Energy,2020,145:622⁃631.
|
37 |
张飞飞.基于MIL⁃100系列材料的生物沼气中CO2/CH4分离性能研究[D].太原:太原理工大学,2018.
|
38 |
叶青.改性多孔材料常温下吸附分离密闭空间二氧化碳[D].杭州:浙江大学,2012.
|
39 |
张学诗.胺基功能化多孔材料的制备及其对CO2吸附性能的研究[D].青岛:青岛科技大学,2015.
|
40 |
梁方方.金属有机骨架材料MIL⁃101(Cr)的改性及常压下吸附CO2的研究[D].新乡:河南师范大学,2016.
|
41 |
Lee C H,Hyeon D H,Jung H,et al. Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM⁃5 zeolites[J]. Journal of Industrial and Engineering Chemistry,2015,23:251⁃256.
|
42 |
Liu X,Gao F,Xu J,et al. Zeolite@Mesoporous silica⁃supported⁃amine hybrids for the capture of CO2 in the presence of water[J]. Microporous and Mesoporous Materials,2016,222:113⁃119.
|
43 |
张晓光,房俊卓,胡奇林.煤基活性炭轻度氧化改性的研究[J].化学世界,2008(4):210⁃212.
|
44 |
单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):133⁃137.
|
45 |
Bai B C,Kim E A,Lee C W,et al. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption[J]. Applied Surface Science,2015,353:158⁃164.
|
46 |
宋涛,廖景明,肖军,等.生物质活性炭微孔和中孔结构对CO2吸附性能的影响[J].新型炭材料,2015,30(2):156⁃166.
|
47 |
Cho S,Lee D,Lee Y S. Separation of biomass using carbon molecular sieves treated with hydrogen peroxide[J]. Journal of Industrial and Engineering Chemistry,2015,21:278⁃282.
|
48 |
宋雪.酸—金属离子改性碳质吸附剂及其吸附分离垃圾填埋气CO2/CH4的研究[D].重庆:重庆大学,2017.
|
49 |
张胜东.玉米芯活性炭的制备、改性及CO2气体吸附性能研究[D].沈阳:东北大学,2014.
|
50 |
郝明明,袁辉,远辉.新疆杏核壳活性炭的改性对含氧官能团的影响[J].炭素技术,2014,33(2):30⁃33.
|
51 |
李通,罗仕忠,吴永永,等.活性炭改性及其对CO2/CH4吸附性能的研究[J].煤炭学报,2011,36(12):2012⁃2017.
|
52 |
孙媛媛.芦竹活性炭的制备、表征及吸附性能研究[D].济南:山东大学,2014.
|
53 |
Hu J,Liu Y,Liu J,et al. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: A computational study[J]. AIChE Journal,2019,66(2): e16835.
|
54 |
宋夫交.功能化多孔材料的制备及其CO2吸附/催化加氢性能研究[D].南京:南京理工大学,2017.
|
55 |
Somboon C,周奎,姚宸,等.碱性金属修饰金属有机骨架材料MOF⁃5吸附位点及其常态下分离二氧化碳/甲烷的应用[J].应用化学,2015,32(5):552⁃556.
|
56 |
朱敏,王艳芳,陈树军,等.M⁃MOF⁃74吸附分离天然气中CO2的模拟研究[J].辽宁石油化工大学学报,2019,39(3):40⁃45.
|
57 |
黄毅雄.天然气脱二氧化碳高效吸附剂的筛选[D].青岛:中国石油大学(华东),2016.
|
58 |
Bae Y S,Hauser B G,Farha O K,et al. Enhancement of CO2/CH4 selectivity in metal⁃organic frameworks containing lithium cations[J]. Microporous and Mesoporous Materials,2011,141(1⁃3):231⁃235.
|
59 |
Niu Z,Guan Q,Shi Y,et al. A lithium⁃modified zirconium⁃based metal organic framework (UiO⁃66) for efficient CO2 adsorption[J]. New Journal of Chemistry,2018,42(24):19764⁃19770.
|
60 |
Xu Q,Liu D,Yang Q,et al. Li⁃modified metal⁃organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity[J]. Journal of Materials Chemistry,2010,20(4):706⁃714.
|
61 |
朱敏,唐迎春,王艳芳,等.改性Ni⁃MOF⁃74的微观结构及脱碳性能研究[J].石油化工高等学校学报,2020,33(1):17⁃22.
|
62 |
刘宏波,朱敏,付越,等.Li+改性分子筛在天然气净化脱CO2中的应用[J].油气田地面工程,2017,36(10):26⁃30.
|
63 |
Han Y,Liu K,Sinnwell M A,et al. Direct observation of Li+ ions trapped in a Mg2+⁃templated metal⁃organic framework[J]. Inorganic Chemistry,2019,58(14):8922⁃8926.
|
64 |
Botas J A,Calleja G,Sánchez⁃Sánchez M,et al. Effect of Zn/Co ratio in MOF⁃74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy[J]. International Journal of Hydrogen Energy,2011,36(17):10834⁃10844.
|