1 |
李宜坤, 李宇乡, 彭杨, 等. 中国堵水调剖60年[J]. 石油钻采工艺, 2019, 41(6): 773⁃787.
|
2 |
Yang R F, Jiang R Z, Guo S, et al. Analytical study on the critical water cut for water plugging: Water cut increasing control and production enhancement[J]. Energy, 2021, 214:119012.
|
3 |
沙鹏. 新型聚合物复合纳米微球调剖驱油剂研究[J]. 石油化工高等学校学报, 2020, 33(5): 54⁃58.
|
4 |
庄建, 张维, 梁云, 等. 多重介质聚合物微球调驱机理研究及应用[J]. 石油化工高等学校学报, 2020, 33(6): 49⁃55.
|
5 |
Cao G Z, Wang Y. Nanostructures and nanomaterials[M].2nd ed. Singapore: World Scientific Publishing Company, 2015.
|
6 |
张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000(3): 42⁃48.
|
7 |
苑蕾, 张静玉, 刘海燕. 纳米材料的合成与应用研究进展[J]. 山东化工, 2020, 49(20): 46⁃47.
|
8 |
Tang X C, Kang W L, Zhou B B, et al. Characteristics of composite microspheres for in⁃depth profile control in oilfields and the effects of polymerizable silica nanoparticles[J]. Powder Technology, 2020, 359: 205⁃215.
|
9 |
Xu Z X, Li B F, Zhao H Y, et al. Investigation of the effect of nanoparticle⁃stabilized foam on EOR: Nitrogen foam and methane foam[J]. Acs Omega, 2020, 5(30): 19092⁃19103.
|
10 |
彭宝亮, 罗健辉, 王平美, 等. 纳米材料在油田堵水调剖中的应用进展[J]. 油田化学, 2016, 33(3): 552⁃556.
|
11 |
彭宝亮, 罗健辉, 丁彬, 等. 低渗透油田堵水调剖中纳米材料的作用分析[C]//2016低渗透油田堵水调剖技术研讨会论文集.西安:中国石油学会. 2016.
|
12 |
尹虎琛, 王玉功, 孙爽. 纳米微球复合堵剂体系在超低渗水平井组深部调剖中的应用[J]. 钻采工艺, 2020, 43(1): 123⁃125.
|
13 |
王继刚, 王洪刚. 新型泡沫调剖剂的室内研究与评价[J]. 科学技术与工程, 2009, 9(20): 6159⁃6162.
|
14 |
李海涛, 高元, 陈安胜, 等. 泡沫体系在油田中的应用及发展趋势[J]. 精细石油化工进展, 2010, 11(2): 22⁃26.
|
15 |
李兆敏, 孙乾, 李松岩, 等. 纳米颗粒提高泡沫稳定性机理研究[J]. 油田化学, 2013, 30(4): 625⁃629.
|
16 |
彭宝亮, 罗健辉, 王平美, 等. 用于低渗透油田调剖的纳米颗粒稳定泡沫体系研究进展[J]. 油田化学, 2017, 34(4): 745⁃748.
|
17 |
Binks B P. Particles as surfactants⁃similarities and differences[J]. Current Opinion in Colloid and Interface Science, 2002, 7(1⁃2): 21⁃41.
|
18 |
Gonzenbach U T, Studart A R, Tervoort E, et al. Ultrastable particle⁃stabilized foams[J]. Angewandte Chemie ⁃ International Edition, 2006, 45(21): 3526⁃3530.
|
19 |
Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid and Interface Science, 2008, 13(3): 134⁃140.
|
20 |
Murray B S, Ettelaie R. Foam stability: Proteins and nanoparticles[J]. Current Opinion in Colloid and Interface Science, 2004, 9(5): 314⁃320.
|
21 |
Du Z P, Bilbao⁃Montoya M P, Binks B P, et al. Outstanding stability of particle⁃stabilized bubbles[J]. Langmuir, 2003, 19(8): 3106⁃3108.
|
22 |
Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722⁃3725.
|
23 |
Zhang S Y, Lan Q, Liu Q, et al. Aqueous foams stabilized by laponite and CTAB[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1): 406⁃413.
|
24 |
李兆敏, 王鹏, 李松岩, 等. SiO2纳米颗粒与SDS对CO2泡沫的协同稳定作用[J]. 东北石油大学学报, 2014, 38(3): 110⁃115.
|
25 |
王鹏, 李兆敏, 徐海霞, 等. SiO2/SDS复合体系CO2泡沫的调驱性能[J]. 东北石油大学学报, 2016, 40(4): 88⁃95.
|
26 |
Guo F, Aryana S. An experimental investigation of nanoparticle⁃stabilized CO2 foam used in enhanced oil recovery[J]. Fuel, 2016, 186: 430⁃442.
|
27 |
郐婧文, 曹伟佳, 卢祥国, 等. 三相纳米泡沫起泡性能影响因素与封堵调剖效果[J]. 油田化学, 2019, 36(1): 83⁃89.
|
28 |
马红卫, 刘玉章, 李宜坤, 等. 柔性转向剂在多孔介质中的运移规律研究[J]. 石油钻采工艺, 2007(4): 80⁃82.
|
29 |
Pereira K A B, Pereira K A B, Oliveira P F, et al. Behavior of partially hydrolyzed polyacrylamide/polyethyleneimine reinforced with coal fly ash for preformed particle hydrogels[J]. Journal of Applied Polymer Science, 2020, 137(46): 49423.
|
30 |
Singh R, Mahto V, Vuthaluru H. Development of a novel fly ash⁃polyacrylamide nanocomposite gel system for improved recovery of oil from heterogeneous reservoir[J]. Journal of Petroleum Science and Engineering, 2018, 165: 325⁃331.
|
31 |
Lakatos I J, Lakatos⁃Szabo J, Szentes G, et al. New alternatives in conformance control: Nanosilica and liquid polymer aided silicate technology[C]//SPE European Formation Damage Conference and Exhibition. Budapest, Hungary: OnePetro, 2015.
|
32 |
Zolfaghari R, Katbab A A, Nabavizadeh J, et al. Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications[J]. Journal of Applied Polymer Science, 2006, 100(3): 2096⁃2103.
|
33 |
Christidis G. Formation and properties of clay⁃polymer complexes 2nd edition[J]. Clay Minerals, 2014, 49(1): 123⁃124.
|
34 |
Haraguchi K, Farnworth R, Ohbayashi A A, et al. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N⁃dimethylacrylamide) and clay[J]. Macromolecules, 2003, 36(15): 5732⁃5741.
|
35 |
Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N⁃isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27): 10162⁃10171.
|
36 |
Singh R, Mahto V. Synthesis, Characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery[J]. Petroleum Science, 2017, 14(4): 765⁃779.
|
37 |
胡俊燕, 万涛, 武大庆, 等. 锂皂石复合聚合物纳米凝胶的研究[J]. 化工新型材料, 2014, 42(5): 126⁃129.
|
38 |
秦义, 张顶学, 刘玉莉, 等. 缓膨耐盐性纳米复合凝胶颗粒的合成及性能研究[J]. 现代化工, 2018, 38(10): 171⁃174.
|
39 |
郭培志, 孙德军. 合成锂皂石分散体系[J]. 化学通报, 2003, 66(5): 312⁃316.
|
40 |
Singh R, Mahto V, Vuthaluru H. Development of a novel fly ash⁃polyacrylamide nanocomposite gel system for improved recovery of oil from heterogeneous reservoir[J]. Journal of Petroleum Science and Engineering, 2018, 165: 325⁃331.
|
41 |
Liu Y F, Dai C L, Wang K, et al. Study on a novel cross⁃linked polymer gel strengthened with silica nanoparticles[J]. Energy & Fuels, 2017, 31(9): 9152⁃9161.
|
42 |
赵永峰, 熊金平, 左禹. 油田堵水用反相乳液的制备与性能研究[J]. 精细石油化工进展, 2010, 11(1): 7⁃10.
|
43 |
毛源, 李月胜, 唐存知. 耐高温纳米聚硅体系深部调堵技术研究与应用[C]//胜利油田北区堵水调剖技术研讨会, 2012: 97⁃101.
|
44 |
Ramsden W. Separation of solids in the surface⁃layers of solutions and 'suspensions' (Observations on surface⁃membranes, bubbles, emulsions, and mechanical coagulation)[J]. Proceedings of the Royal Society of London, 1904, 72(477⁃486): 156⁃164.
|
45 |
Leal⁃Calderon F, Schmitt V. Solid⁃stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2009, 13(4): 217⁃227.
|
46 |
Arditty S, Schmitt V, Giermanska⁃Kahn J, et al. Materials based on solid⁃stabilized emulsions[J]. Journal of Colloid & Interface Science, 2004, 275(2): 659⁃664.
|
47 |
Pickering S U. CXCVI.⁃Emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91: 2001⁃2021.
|
48 |
孙振民, 杜峰. 选择性堵水用纳米粒子稳定乳液性能研究[J]. 山东化工, 2010, 39(11): 28⁃31.
|
49 |
葛际江, 张强, 王娜, 等. 纳米SiO2和表面活性剂协同稳定的水包油乳状液驱油性能研究[J]. 科学技术与工程, 2015, 15(26): 165⁃170.
|
50 |
李刚辉, 樊孟孟, 王婷婷, 等. 柴油基纳米粒子乳液的制备及其堵水性能研究[J]. 陕西科技大学学报(自然科学版), 2016, 34(3): 92⁃96.
|
51 |
刘景三. 超细水泥在油田开发中的应用[J]. 油气采收率技术, 1998, 5(2): 41⁃46.
|
52 |
龚险峰, 祝明华, 吴广涛, 等. 低渗油藏纳米粉体堵剂性能评价及应用[J]. 石油钻采工艺, 2015, 37(5): 104⁃108.
|
53 |
刘鉴增. 基于紧密堆积理论的纳米改性水泥浆体系研究[D]. 北京:中国石油大学(北京), 2019.
|
54 |
王小燕. 纳米材料改性水泥浆(石)结构性能研究[D]. 北京:中国石油大学(北京), 2016.
|
55 |
陈登, 宋旭艳, 何智海. 粉煤灰与水泥浆体微界面的力学性能研究[J]. 非金属矿, 2020, 43(5): 31⁃33.
|
56 |
樊震旺, 张雷, 陈朋成, 等. 纳米碳酸钙改性超细水泥注浆材料研究[J]. 矿业研究与开发, 2020, 40(5): 75⁃79.
|
57 |
罗跃, 王正良, 杨顺贵, 等. 中原油田调剖堵水使用的颗粒堵剂[J]. 油田化学, 1999, 16(2): 132⁃133.
|
58 |
龚险峰, 祝明华, 吴广涛, 等. 超微细粉体堵剂性能评价及应用[J]. 油田化学, 2016, 33(2): 248⁃253.
|