1 |
李蕾, 宫清嵩, 王贺. 可见光氧化还原与金属镍协同催化偶联反应研究[J]. 石油化工高等学校学报, 2018, 31(6): 1⁃10.
|
2 |
Zhang F, Wang X, Liu H, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Applied Sciences, 2019, 9(12): 2489⁃2531.
|
3 |
Li Y, Wang H, Huang L, et al. Promoting LED light driven photocatalytic inactivation of bacteria by novel β⁃Bi2O3@BiOBr core/shell photocatalyst[J]. Journal of Alloys and Compounds, 2019, 816: 152665⁃152682.
|
4 |
Mittal A, Mari B, Sharma S, et al. Non⁃metal modified TiO2: A step towards visible light photocatalysis[J]. Journal of Materials Science, 2019, 30(4): 3186⁃3207.
|
5 |
Haffad S, Kiprono K K. Interfacial structure and electronic properties of TiO2/ZnO/TiO2 for photocatalytic and photovoltaic applications: A theoretical study[J]. Surface Science, 2019, 686: 10⁃16.
|
6 |
Garzon⁃Roman A, Zuñiga⁃Islas C, Quiroga⁃González E. Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties[J]. Ceramics International, 2020, 46(1): 1137⁃1147.
|
7 |
李昱慧, 张静, 张昱屾, 等. 石墨相氮化碳光催化剂改性的研究进展[J]. 石油化工高等学校学报, 2019, 32(2): 3⁃9.
|
8 |
Li M, Huang H, Yu S, et al. Facet, junction and electric field engineering of bismuth⁃based materials for photocatalysis[J]. ChemCatChem, 2018, 10(20): 4477⁃4496.
|
9 |
Shan W, Hu Y, Bai Z, et al. In situ preparation of g⁃C3N4/bismuth⁃based oxide nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 188: 1⁃12.
|
10 |
Bhat S S, Jang H W. Recent advances in bismuth⁃based nanomaterials for photoelectrochemical water splitting[J]. ChemSusChem, 2017, 10(15): 3001⁃3018.
|
11 |
Chen T, Hao Q, Yang W, et al. A honeycomb multilevel structure Bi2O3 with highly efficient catalytic activity driven by bias voltage and oxygen defect[J]. Applied Catalysis B: Environmental, 2018, 237: 442⁃448.
|
12 |
Lim H, Rawal S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation[J]. Progress in Natural Science: Materials International, 2017, 27(3): 289⁃296.
|
13 |
Stalin S, Gaikwad D K, Samee M A, et al. Structural, optical features and gamma ray shielding properties of Bi2O3⁃TeO2⁃B2O3⁃GeO2 glass system[J]. Ceramics International, 2020, 46(11): 17325⁃17334.
|
14 |
Harriman A, Thomas J M, Zhou W, et al. A new family of photocatalysts based on Bi2O3[J]. Journal of Solid State Chemistry, 1988, 72(1): 126⁃130.
|
15 |
Li H, Chang X, Zhang Y, et al. Degradation of 2,4,6⁃trichlorphenol by producing hydrogen using ultrasonic mist generated from photocatalysts suspension[J]. Emerging Contaminants, 2020, 6: 155⁃161.
|
16 |
Mishchenko K V, Gerasimov K B, Yukhin Y M. Thermal decomposition of some bismuth oxocarboxylates with formation of β⁃Bi2O3[J]. Materials Today: Proceedings, 2020, 25(3): 391⁃394.
|
17 |
Wang Q, Gao Q, Wu H, et al. In situ construction of semimetal Bi modified BiOI⁃Bi2O3 film with highly enhanced photoelectrocatalytic performance[J]. Separation and Purification Technology, 2019, 226(1): 232⁃240.
|
18 |
Zhang W, Gao S, Chen D. Preparation of Ce3+ doped Bi2O3 hollow needle⁃shape with enhanced visible⁃light photocatalytic activity[J]. Journal of Rare Earths, 2019, 37(7): 726⁃731.
|
19 |
Wang Q, Liu E, Zhang C, et al. Synthesis of Cs3PMo12O40/Bi2O3 composite with highly enhanced photocatalytic activity under visible⁃light irradiation[J]. Journal of Colloid and Interface Science, 2018, 516: 304⁃311.
|
20 |
邵良志. BiOCl纳米片的制备、修饰及催化性能研究[D]. 淮南:安徽理工大学, 2018.
|
21 |
Xie D, Su Q, Zhang J, et al. Graphite oxide⁃assisted sonochemical preparation of α⁃Bi2O3 nanosheets and their high⁃efficiency visible light photocatalytic activity[J]. Journal of Materials Science, 2014, 49(1): 218⁃224.
|
22 |
Xu K, Wang L, Xu X, et al. Two dimensional bismuth⁃based layered materials for energy⁃related applications[J]. Energy Storage Materials, 2019, 19: 446⁃463.
|
23 |
Li X, Yu J, Jaroniec M. Hierarchical photocatalysts[J]. Chemical Society Reviews, 2016, 45: 2603⁃2636.
|
24 |
Cheng H, Huang B, Lu J, et al. Synergistic effect of crystal and electronic structures on the visible⁃light⁃driven photocatalytic performances of Bi2O3 polymorphs[J]. Physical Chemistry Chemical Physics, 2010, 12(47): 15468⁃15475.
|
25 |
Shinde N M, Xia Q X, Yun J M, et al. A binder⁃free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni⁃foam for fabricating laboratory scale potential pencil⁃type asymmetric supercapacitor device[J]. Dalton Trans, 2017, 46(20): 6601⁃6611.
|
26 |
Wang J, Yang X, Zhao K, et al. Precursor⁃induced fabrication of β⁃Bi2O3 microspheres and their performance as visible⁃light⁃driven photocatalysts[J]. Journal of Materials Chemistry, 2013, 1(32): 9069⁃9074.
|
27 |
Yang X, Meng J, Wang Y, et al. Novel formation of Bi@BiFe⁃glycolate hollow spheres and their conversion into Bi2O3/BiFeO3 composite hollow spheres with enhanced activity and durability in visible photocatalysis[J]. New Journal of Chemistry, 2018, 42: 10697⁃10703.
|
28 |
Yan Y, Zhou Z, Cheng Y, et al. Template⁃free fabrication of α⁃ and β⁃Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification[J]. Journal of Alloys and Compounds, 2014, 605: 102⁃108.
|
29 |
Luo D, Kang Y. Facile photodeposition synthesis of novel Ag/4⁃Br/Bi2O3 composite photocatalyst[J]. Materials Letters, 2019, 240: 1⁃4.
|
30 |
Xia M H, Huang L L, Zhang Y B, et al. Enhanced photocatalytic activity of La3+⁃doped TiO2 nanotubes with full wave⁃band absorption[J]. Journal of Electronic Materials, 2018, 47(9): 1⁃5.
|
31 |
Gao X, Shang Y, Liu L, et al. Multilayer ultrathin Ag⁃δ⁃Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation[J]. Journal of Colloid and Interface Science, 2019, 533: 649⁃657.
|
32 |
Bera K K, Chakraborty M, Chowdhury S R, et al. Significantly improved and synergistic effect of Pt⁃ZnO⁃Bi2O3 ternary hetero⁃junctions toward anode⁃catalytic oxidation of methanol in alkali[J]. Electrochimica Acta, 2019, 322: 134775⁃134791.
|
33 |
Yang K, Li J, Peng Y, et al. Enhanced visible light photocatalysis over Pt⁃loaded Bi2O3: An insight into its photogenerated charge separation, transfer and capture[J]. Physical Chemistry Chemical Physics, 2016, 19(1): 251⁃257.
|
34 |
Lim H, Rawal S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation[J]. Progress in Natural Science: Materials International, 2017, 27(3): 289⁃296.
|
35 |
Zhu G, Que W, Zhang J. Synthesis and photocatalytic performance of Ag⁃loaded β⁃Bi2O3 microspheres under visible light irradiation[J]. Journal of Alloys and Compounds, 2011, 509(39): 9479⁃9486.
|
36 |
Ma Y, Han Q, Chiu T, et al. Simple thermal decomposition of bismuth citrate to Bi/C/alpha⁃Bi2O3 with enhanced photocatalytic performance and adsorptive ability[J]. Catalysis Today, 2020, 340: 40⁃48.
|
37 |
Yu X, Sun J, Zhao W, et al. MOF⁃derived Bi2O3@C microrods as negative electrodes for advanced asymmetric supercapacitors[J]. RSC Advances, 2020, 10: 14107⁃14112.
|
38 |
Dai G, Liu S, Liang Y, et al. A simple preparation of carbon doped porous Bi2O3 with enhanced visible⁃light photocatalytic activity[J]. Journal of Alloys and Compounds, 2014, 608: 44⁃48.
|
39 |
Jiang S, Wang L, Hao W, et al. Visible⁃light photocatalytic activity of S⁃doped α⁃Bi2O3[J]. The Journal of Physical Chemistry C, 2015, 119(25): 14094⁃14101.
|
40 |
Hao Q, Wang R, Lu H, et al. One⁃pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 219: 63⁃72.
|
41 |
Zhang T, Zeng X, Xia Y, et al. Morphology evolution and photocatalytic applications of W⁃doped Bi2O3 films prepared using unique oblique angle co⁃sputtering technology[J]. Ceramics International, 2020, 45(17): 21968⁃21974.
|
42 |
Jiang L, Yuan X, Pan Y, et al. Doping of graphitic carbon nitride for photocatalysis: A reveiw[J]. Applied Catalysis B: Environmental, 2017, 217: 388⁃406.
|
43 |
Wang Y, Li Y, Bai X, et al. Facile synthesis of Y⁃doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Catalysis Communications, 2016, 84: 179⁃182.
|
44 |
Sun H, Guo X, Yu F, et al. Enhanced sinterability and electrical performance of Sm2O3 doped CeO2/BaCeO3 electrolytes for intermediate⁃temperature solid oxide fuel cells through Bi2O3 co⁃doping[J]. Ceramics International, 2019, 45(6): 7667⁃7672.
|
45 |
Li J Z, Zhong J B, Zeng J, et al. Improved photocatalytic activity of dysprosium⁃doped Bi2O3 prepared by sol⁃gel method[J]. Materials Science in Semiconductor Processing, 2013, 16(2): 379⁃384.
|
46 |
Wu S, Fang J, Xu W, et al. Hydrothermal synthesis, characterization of visible⁃light⁃driven α⁃Bi2O3 enhanced by Pr3+ doping[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(10): 1828⁃1835.
|
47 |
Li T, Quan S, Shi X, et al. Fabrication of La⁃doped Bi2O3 nanoparticles with oxygen vacancies for improving photocatalytic activity[J]. Catalysis Letters, 2019, 150(3): 640⁃651.
|
48 |
Kara F, Kurban M, Coskun B. Evaluation of electronic transport and optical response of two⁃dimensional Fe⁃doped TiO2 thin films for photodetector applications[J]. Optik, 2020, 210: 164605⁃164612.
|
49 |
Liang J, Zhu G, Liu P, et al. Synthesis and characterization of Fe⁃doped β⁃Bi2O3 porous microspheres with enhanced visible light photocatalytic activity[J]. Superlattices and Microstructures, 2014, 72: 272⁃282.
|
50 |
Giahi M, Niavol S S, Taghavi H, et al. Synthesis and characterization of ZnO⁃TiO2 nanopowders doped with Fe via sol⁃gel method and their application in photocatalytic degradation of anionic surfactant[J]. Russian Journal of Physical Chemistry A, 2015, 89(13): 2432⁃2437.
|
51 |
Wu Z, Zeng D, Liu X, et al. Hierarchical δ⁃Bi2O3/Bi2O2CO3 composite microspheres: Phase transformation fabrication, characterization and high photocatalytic performance[J]. Research on Chemical Intermediates, 2018, 44(10): 5995⁃6010.
|
52 |
Adhikari S P, Dean H, Hood Z D, et al. Visible⁃light⁃driven Bi2O3/WO3 composites with enhanced photocatalytic activity[J]. RSC Advances, 2015, 5(111): 91094⁃91102.
|
53 |
Li C, Ma Y, Zheng S, et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p⁃n junction as highly efficient visible⁃light photocatalyst for organic pollutants removal[J]. Journal of Colloid and Interface Science, 2020, 576(15): 291⁃301.
|
54 |
Ramakrishnan V, Nair K G, Dhakshinamoorthy J, et al. Porous, n⁃p type ultra⁃long, ZnO@Bi2O3 heterojunction nanorods⁃based NO2 gas sensor: New insights towards charge transport characteristics[J]. Physical Chemistry Chemical Physics, 2020, 22: 7524⁃7536.
|
55 |
Khalid N R, Israr Z, Tahir M B, et al. Highly efficient Bi2O3/MoS2 p⁃n heterojunction photocatalyst for H2 evolution from water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8479⁃8489.
|
56 |
Lu H, Hao Q, Chen T, et al. A high⁃performance Bi2O3/Bi2SiO5 p⁃n heterojunction photocatalyst induced by phase transition of Bi2O3[J]. Applied Catalysis B: Environmental, 2018, 237: 59⁃67.
|
57 |
Yi S, Yue X, Xu D, et al. Study on photogenerated charge transfer properties and enhanced visible⁃light photocatalytic activity of p⁃type Bi2O3/n⁃type ZnO heterojunctions[J]. New Journal of Chemistry, 2015, 39(4): 2917⁃2924.
|
58 |
Zhu B, Xia P, Li Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z⁃scheme g⁃C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science, 2016, 391: 175⁃183.
|
59 |
梅邱峰, 张飞燕, 王宁, 等. 二氧化钛基Z型异质结光催化剂[J]. 无机化学学报, 2019, 35(8): 1321⁃1339.
|
60 |
Ji R, Ma C, Ma W, et al. Z⁃scheme MoS2/Bi2O3 heterojunctions: enhanced photocatalytic degradation performance and mechanistic insight[J]. New Journal of Chemistry, 2019, 43(30): 11876⁃11886.
|
61 |
Guo J, Liu Y, Hao Y, et al. Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α⁃Bi2O3 photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 224: 841⁃853.
|
62 |
Wang S, Wang L, Ma W, et al. Moderate valence band of bismuth oxyhalides (BiOXs, X=Cl, Br, I) for the best photocatalytic degradation efficiency of MC⁃LR[J]. Chemical Engineering Journal, 2015, 259: 410⁃416.
|
63 |
Ai Z, Wang J, Zhang L. Substrate⁃dependent photoreactivities of BiOBr nanoplates prepared at different pH values[J]. Chinese Journal of Catalysis, 2015, 36(12): 2145⁃2154.
|
64 |
Zhang J, Chen X, Bai Y, et al. Boosting photocatalytic water splitting by tuning built⁃in electric field at phase junction[J]. Journal of Materials Chemistry A, 2019, 7(17): 10264⁃10272.
|
65 |
Hou J, Yang C, Wang Z, et al. In situ synthesis of α⁃β phase heterojunction on Bi2O3 nanowires with exceptional visible⁃light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2013, 142: 504⁃511.
|
66 |
Zhang X, Li C, Liang J, et al. Self⁃templated constructing of heterophase junction into hierarchical porous structure of semiconductors for promoting photogenerated charge separation[J]. ChemCatChem, 2020, 12(4): 1212⁃1219.
|