1 |
CHENG F Y, CHEN J. Metal⁃air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172⁃2192.
|
2 |
SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337⁃365.
|
3 |
SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen⁃reduction activity on perovskite oxide catalysts for fuel cells and metal⁃air batteries[J]. Nature Chemistry, 2011, 3(7): 546⁃550.
|
4 |
关扬, 闫飞, 黄亮亮, 等. Pt负载Li2Co2O4的合成及其析氧性能研究[J]. 辽宁石油化工大学学报, 2018, 38(5): 30⁃34.
|
|
GUAN Y, YAN F, HUANG L L, et al. Synthesis of Pt loaded Li2Co2O4 and its oxygen evolution performance[J]. Journal of Liaoning Shihua University, 2018, 38(5): 30⁃34.
|
5 |
BU L Z, ZHANG N, GUO S J, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410⁃1414.
|
6 |
LI P S, WANG M Y, DUAN X X, et al. Boosting oxygen evolution of single⁃atomic ruthenium through electronic coupling with cobalt⁃iron layered double hydroxides[J]. Nature Communications, 2019, 10(1): 1711.
|
7 |
张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 19⁃27.
|
|
ZHANG Y J, ZHANG B S, SUN J. Progress in hydrogen production by water electrolysis and its electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35(6): 19⁃27.
|
8 |
SHI Q, LIU Q, MA Y, et al. High⁃performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc⁃air battery and self⁃powered overall water splitting[J]. Advanced Energy Materials, 2020, 10(10): 1903854.
|
9 |
YANG J, WANG X, LI B, et al. Novel iron/cobalt⁃containing polypyrrole hydrogel⁃derived trifunctional electrocatalyst for self⁃powered overall water splitting[J]. Advanced Functional Materials, 2017, 27(17): 1606497.
|
10 |
李志学, 杨占旭. 共沉淀法制备Co9S8/C材料以及性能研究[J]. 辽宁石油化工大学学报, 2020, 40(2): 1⁃5.
|
|
LI Z X, YANG Z X. Preparation and properties of Co9S8/C materials by coprecipitation method[J]. Journal of Liaoning Petrochemical University, 2020, 40(2): 1⁃5.
|
11 |
CAO X C, YAN W N, JIN C, et al. Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction[J]. Electrochimica Acta, 2015, 180: 788⁃794.
|
12 |
GAO Y, ZHAO H, CHEN D J, et al. In situ synthesis of mesoporous manganese oxide/sulfur⁃doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions[J]. Carbon, 2015, 94: 1028⁃1036.
|
13 |
KIM J G, KIM Y, NOH Y, et al. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li⁃O2 battery cathodes[J]. ChemSusChem, 2015, 8(10): 1752⁃1760.
|
14 |
YE D X, WU T, CAO H M, et al. Electrocatalysis of both oxygen reduction and water oxidation using a cost⁃effective three⁃dimensional MnO2/graphene/carbon nanotube[J]. RSC Advances, 2015, 5(34): 26710⁃26715.
|
15 |
YEON J S, KO Y H, PARK T H, et al. Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen⁃doped reduced graphene oxide networks for lithium⁃sulfur batteries[J]. Energy & Environmental Materials, 2022, 5(2): 555⁃564.
|
16 |
许雪容, 彭祥. 层状双金属氢氧化物电催化剂的合成与应用研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 1⁃11.
|
|
XU X R, PENG X. Research progress in preparation and application of layered double hydroxides electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35(5): 1⁃11.
|
17 |
SUN H, LI Q, LIAN Y B, et al. Highly efficient water splitting driven by zinc⁃air batteries with a single catalyst incorporating rich active species[J]. Applied Catalysis B: Environmental, 2020, 263: 118139.
|
18 |
ZHANG H B, MA Z J, DUAN J J, et al. Active sites implanted carbon cages in core⁃shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2016, 10(1): 684⁃694.
|
19 |
WANG T T, KOU Z K, MU S C, et al. 2D dual⁃metal zeolitic⁃imidazolate⁃framework⁃(ZIF)⁃derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc⁃air batteries[J]. Advanced Functional Materials, 2018, 28(5): 1705048.
|
20 |
JIN Q Y, REN B W, CUI H, et al. Nitrogen and cobalt co⁃doped carbon nanotube films as binder⁃free trifunctional electrode for flexible zinc⁃air battery and self⁃powered overall water splitting[J]. Applied Catalysis B: Environmental, 2021, 283: 119643.
|
21 |
DONG S, LI T T, ZHANG Z M, et al. Improving electrical contact properties of carbon nanotubes by Co doping using metal⁃organic framework as template[J]. Materials Letters, 2019, 253: 420⁃423.
|
22 |
成艳. 过渡金属化合物/碳纳米管杂化三维自支撑电催化剂的原位构筑与多组分协同催化机制研究[D]. 呼和浩特: 内蒙古大学, 2021.
|
23 |
LI Z N, HAN X J, MA Y, et al. MOFs⁃derived hollow Co/C microspheres with enhanced microwave absorption performance[J]. ACS Sustainable Chemistry& Engineering, 2018, 6(7): 8904⁃8913.
|
24 |
MA N, JIA Y, YANG X F. Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions[J]. Journal of Materials Chemistry A, 2016, 4(17): 6376⁃6384.
|
25 |
杨铭. 钴基纳米催化剂的制备及其电解水性能的研究[D]. 兰州: 兰州大学, 2020.
|