Most Read
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
The Latest Advancements in Technology for Intelligent Drilling and Completion Equipment Research
Zhaoxuan LI, Ting YU, Ming WANG, Jun CHEN, Jin LIU, Huan CHENG
Abstract2627)   HTML35)    PDF (5240KB)(1508)      

Ultra?deep wells of over 10 000 meters have been successfully drilled in China, and deeper breakthroughs has been made in drilling and completion equipment technology, which indicates that China has achieved a significant milestone in the field of oil exploration and development. It is crucial to improve drilling efficiency and ensure safety in this context. Intelligent drilling and completion technology is a core solution to the challenges faced in the industry. It offers significant advantages in improving drilling efficiency and safety. By integrating advanced automation control, real?time data monitoring, and machine learning technology, it optimizes drilling operations. This not only improves drilling efficiency but also dramatically enhances drilling and completion safety. This paper summarizes the current development status of intelligent drilling and completion equipment technology. It proposes a trinity research approach that includes automation control, real?time data monitoring, and machine learning technology. The paper focuses on analyzing the development journey and technological innovation of domestic and international innovative equipment, such as intelligent drill bits, intelligent guiding tools, intelligent drill pipes, intelligent slip sleeves, and intelligent drilling rigs. To achieve comprehensive development of intelligent drilling and completion equipment technology in the future, it is recommended to utilize artificial intelligence, intelligent optimization algorithms, and foster domestic and international cooperation.

2024, 44 (6): 73-80. DOI: 10.12422/j.issn.1672-6952.2024.06.010
Preparation and Properties of Fully Biodegradable High Impact PLA/PBAT Composites
Wenxin JIANG, Guangxiang ZHANG, Ke YANG, Guiyan ZHAO
Abstract2567)   HTML14)    PDF (1717KB)(645)      

Poly (butyleneadipate-co-terephthalate) (PBAT) was used to toughen poly (lactic acid) (PLA), and a fully biodegradable high impact PLA/PBAT composite was prepared. To improve the interface compatibility between PBAT and PLA, PBAT grafted glycidyl methacrylate (GMA)(PBAT-GMA) compatibilizer was prepared by the melt grafting method. The effect of the mass fraction of compatibilizer on the properties of PLA/PBAT composite was studied. The results show that with the increase of PBAT-GMA mass fraction, the impact strength of the composites is significantly improved. When the PBAT?GMA mass fraction is 30%, the impact strength of the composites reaches 64.8 kJ/m2, and the elongation at break is 289.9%; the compatibilizing mechanism is the epoxy groups on PBAT?GMA can react with the end groups of PLA, which effectively improves the interfacial compatibility between PLA and PBAT.

2024, 44 (5): 31-37. DOI: 10.12422/j.issn.1672-6952.2024.05.005
Research Progress on Reservoir Characteristics and Seepage Characteristics of Deep and Ultra⁃Deep Carbonate Oil and Gas Reservoirs
Yulong ZHAO, Xianyu QIANG, Ruihan ZHANG, Bin ZHU, Xiangyu LIU
Abstract2339)   HTML14)    PDF (1821KB)(436)      

Deep and ultra-deep carbonate oil and gas reservoirs, with their vast reserves and immense potential, have emerged as critical strategic assets in global energy supply. However, the complex challenges posed by high-temperature, high-pressure environments, intricate pore-throat structures, and the coexistence of macro-pores, dissolution cavities, and fractures make traditional exploration and production technologies insufficient to manage such complexity. As exploration and development progress, precise reservoir characterization and seepage behavior research face significant hurdles, including advanced modeling, complex seepage experiments, and accurate description of reservoir properties. Therefore, this review offers an in-depth analysis of the latest developments and key challenges in the characterization and seepage behavior of deep and ultra-deep carbonate reservoirs. It provides a comprehensive summary of cutting?edge methods for detailed microstructural reservoir characterization and multi?attribute seismic interpretation techniques enhanced by artificial intelligence. The paper also explores the application and success of multi?scale characterization approaches in complex reservoirs,while outlining the primary technical strategies and emerging trends in reservoir identification and description. Additionally,the article emphasizes recent advancements in understanding seepage characteristics under high-temperature and high?pressure conditions in deep carbonate reservoirs, focusing on multi-scale seepage theory and gas-water two?phase flow mechanisms. By examining experimental data and theoretical models from both domestic and international research, the review highlights current challenges and future directions in seepage studies, providing valuable insights for the development and efficient exploitation of deep and ultra?deep oil and gas reservoirs.

2024, 44 (5): 44-53. DOI: 10.12422/j.issn.1672-6952.2024.05.007
Research Progress of Multi⁃Function Anti⁃Corrosion Coatings
Yaxiong SUN, Fengting CAO, Tiegang WANG, Tao LI, Yong CHEN, Jinxin CAO, Yanmei LIU, Qixiang FAN
Abstract2259)   HTML22)    PDF (1686KB)(1609)      

Metal corrosion is an irreversible destructive behavior, therefore, the research of anticorrosive coatings has become a vital research topic in various fields. With the development of recent years, the single protective form of anti?corrosion coating is no longer sought after, the advent of barrier/self-healing coatings has added a significant complement to anti?corrosion coatings and has become one of the most widely studied topic today. Subsequently,new anti-corrosion forms such as ion exchange, hydrophobicity and intelligent self-warning have appeared on the market. Dual/multi-functional anti?corrosion coatings that integrate self-healing, barrier properties, hydrophobic properties and intelligent self-warning properties have also become research topics in recent years. In this paper, the research progress of barrier/self-healing bifunctional anti?corrosion coatings, other dual-function anti-corrosion coatings (ion exchange/self-healing coatings, hydrophobic/self-healing, self-warning/self-healing) and multi-functional anti-corrosion coatings are reviewed, and the future development direction of more intelligent and green dual/multi-functional coatings is prospected.

2024, 44 (5): 72-81. DOI: 10.12422/j.issn.1672-6952.2024.05.011
Preparation and Properties of Copper⁃Activated Lignin Activated Carbon
Yaru QIU, Kun LAN, Changdong CHEN, Fangfang WANG, Caiyun LU
Abstract2165)   HTML45)    PDF (1657KB)(364)      

Using sodium lignosulfonate and copper chloride dihydrate as raw materials, and activated carbon modified materials under different synthetic conditions were prepared by calcination under N2 atmosphere by impregnation and activation. The structure and surface morphology of the prepared materials were studied by X-ray diffraction (XRD), infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and other testing methods. Taking K2Cr2O7 solution with mass concentration of 20 mg/L as the research object, the Cr(Ⅵ) content in the solution was detected by Diphenyl carbamide chromogenic method, and the adsorption capacity of the prepared activated carbon modified materials was calculated. According to the experimental results, when the proportion of copper is 20% and the calcination temperature is 700 ℃, the adsorption performance of the material is the best, and the adsorption capacity is 72.2 mg/g. The adsorption process conforms to the Langmuir monolayer adsorption and Pseudo-second-order kinetics.

2024, 44 (5): 1-7. DOI: 10.12422/j.issn.1672-6952.2024.05.001
Application of Formation Pressure Monitoring While Drilling Technology in Deep and Ultra⁃Deep Formation
Xinghua ZHANG, Pengbo NI, Haosheng WU, Yuan SUN, Shibin LIU, Sai YIN
Abstract2146)   HTML10)    PDF (1702KB)(176)      

There are several sets of formation pressure systems in Y structure of block X in Bohai Sea. Shahejie Formation and its upper strata are sedimentary undercompacted layers. dc index method is adopted to monitor formation pressure. The Mesozoic buried-hills are widely distributed in medium acid volcanic rocks, which are non-sedimentary underpressure layers. The formation pressure monitoring method of Sigma index is used to monitor the formation pressure. The real drilling shows that the formation pressure monitoring method of dc index has good applicability in the formation profile pressure monitoring dominated by sand and mudstone. The formation pressure monitoring method of Sigma index has a good application effect in the non-sand mudstone formation profile pressure monitoring, and the combined application of the two provides effective technical support for the smooth drilling. The application of Sigma index formation pressure monitoring method in deep and ultra?deep layers effectively improves the accuracy of the deep and ultra?deep layer pressure monitoring technology while drilling. The practical application shows that the results of formation pressure monitoring while drilling are in good conformity with the measured formation pressure results, and the formation pressure monitoring method of Sigma index has the value of popularization and application in deep and ultra-deep formation.

2024, 44 (5): 61-65. DOI: 10.12422/j.issn.1672-6952.2024.05.009
Photocatalytic Degradation of Tetracycline Hydrochloride by CeO 2@UiO⁃66
Lin ZHANG, Xiaojie GONG, Lihua LI
Abstract2029)   HTML25)    PDF (1731KB)(618)      

The environmental contamination caused by tetracycline hydrochloride (TC) has aroused widespread concern, photocatalytic degradation of TC has become an effective method. CeO2 was prepared by coprecipitation method, and solvothermal synthesis of CeO2@UiO-66 composite catalysts. The prepared catalysts were characterized by FT-IR, XRD, SEM and EDS respectively, and the effects of the amount of CeO2, catalyst mass concentration and H2O2 mass fraction on the photocatalytic degradation of TC were also investigated. The results showed that CeO2@UiO?66 was successfully synthesized. When the amount of CeO2 substance is 25 mmol, the mass concentration of TC solution is 20 mg/L, the mass concentration of catalyst is 0.2 g/L, and the mass fraction of H2O2 is 2%, CeO2@UiO?66 photocatalytic effect is the best, and the TC degradation rate reaches over 98% when irradiated by UV lamp for 70 min. The free radical trapping experiments showed that holes and ·OH were the main contributors in the photocatalytic process. In addition, after six cycles, the degradation rate of TC composite photocatalyst can still maintain above 85%, which indicates its good stability.

2024, 44 (5): 8-14. DOI: 10.12422/j.issn.1672-6952.2024.05.002
Optimization of Degradation Conditions of Paraffin⁃Degrading Mixed Bacteria Based on Orthogonal Experiment and Response Surface Methodology
Kuo LI, Hui WANG, Shengnan DU, Weiqiang WANG
Abstract2025)   HTML13)    PDF (1653KB)(204)      

Microbial dewaxing of crude oil is an efficient and simple method. In order to further improve the paraffin degradation rate of microorganisms, two strains L and K were used to form paraffin degradation mixed bacteria, and their degradation conditions were optimized. The factors affecting the degradation of mixed bacteria (culture temperature, initial pH value of culture medium, salt concentration, and V(L strain )/V(K strain)) were determined by orthogonal experiment and single factor experiment. Box-Behnken method was used to design four?factor three?level experiment and response surface optimization, and a mathematical model was established to explore the best conditions for the degradation of paraffin by mixed bacteria. The experimental results showed that the influence of four single factors is as follows: V(L strain)/V(K strain)>culture temperature>salt concentration>initial pH value of culture medium. Their primary term, secondary term and individual interaction term had significant influence on the paraffin degradation rate. The optimal experimental operating conditions for the mixed bacteria to degrade paraffin were determined as follows: culture temperature 37.2 ℃, initial pH value of culture medium 7.3, salt concentration of culture medium 1.2%, ratio of mixed bacteria V(L strain)/V(K strain)=1.0∶1.6, and paraffin degradation rate 58.67%. The mixed bacteria were used to act on crude oil under the optimized conditions, and the biodegradation rate was 41.38%,have good application prospects.

2024, 44 (5): 22-30. DOI: 10.12422/j.issn.1672-6952.2024.05.004
One⁃Step Synthesis of Co@CNT/CN Nanocomposites and Their Oxygen Evolution Properties
Wencai ZHANG, Yajuan CHEN, Xiaohong SHI, Shuijiang MOU, Jing TANG, Weijun LI
Abstract1946)   HTML12)    PDF (3398KB)(326)      

Co@CNT/CN nanocomposites were obtained by a simple one-pot co?precipitation method using dicyandiamide, glucose and cobalt nitrate as raw materials. The effect of carbon nanotubes (CNTs) on the catalytic activity of Co was investigated by X-ray diffraction (XRD) and electrochemical tests. The results show that Co@CNT/CN can be obtained only at the calcination temperature of 850 ℃. And after electrochemical performance test, it was found that the electrocatalytic activity of Co@CNT/CN material with carbon nanotubes was significantly higher than that of other samples, mainly because carbon nanotubes have special conductivity, but also can promote the separation of Co elemental, reduce the agglomeration phenomenon, so as to obtain higher electrocatalytic activity.

2024, 44 (5): 38-43. DOI: 10.12422/j.issn.1672-6952.2024.05.006
Research Progress and Prospect of Coiled Tubing Operation Technology in Ultra⁃Deep Well
Shaohu LIU, Suonan WANG, Baolong QU, Lei ZHANG, Rui HUANG
Abstract1865)   HTML14)    PDF (2011KB)(209)      

In oil and gas extraction, coiled tubing technology has attracted much attention because of its advantages such as fast operation time, little damage to the formation low labor intensity, etc. The research of coiled tubing technology is a systematic project involving many aspects. This paper first starts the discussion from the domestic and international literature published and the main research scholars review the development process of coiled tubing technology, and summarise the relevant achievements existing in China. At present, the coiled tubing technology is in the stage of rapid development, but the research of coiled tubing in ultra-deep wells is minimal. The authors describe the relevant research carried out by the team on the downhole accessibility of coiled tubing in ultra-deep wells, the extension of the horizontal section of coiled tubing, the optimization of the construction parameters of coiled tubing operation, and the downhole safety assessment of coiled tubing operation. According to the current status of coiled tubing technology research in ultra-deep wells, it is suggested to carry out the research related to the real-time warning technology of coiled tubing fatigue life based on the digital intelligence technology, the ability of tractor?driven coiled tubing extension, and the research and development of high?temperature?resistant tools and fluids, to solve the technical difficulties of coiled tubing operation in ultra-deep wells.

2024, 44 (5): 54-60. DOI: 10.12422/j.issn.1672-6952.2024.05.008
Preparation of the Reduced Graphene Oxide⁃Based Tin Selenide Nano⁃Petal Composite and Its Electrocatalytic Properties
Yanan WANG, Chuchu MENG, Liran PEI, Xitong WANG, Junhua LI, Jianhua QIAN
Abstract1831)   HTML15)    PDF (5271KB)(456)      

The reduction of graphene oxide(GO), in?situ loading of SnSe and interface assembly were achieved simultaneously by microwave method, and the reduced graphene oxide(rGO)?supported the petal?shaped SnSe (SnSe/rGO) composite was successfully prepared. The SnSe/rGO was characterized by Raman spectroscopy, X?ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the effects of different rGO contents for SnSe/rGO composite on the electrocatalytic oxygen reduction reaction(ORR) were investigated. The results indicated that there was an interaction between SnSe and matrix rGO, and Sn-C and Sn-O-C bonds were used as bridges of charge transfer. The intimate interconnection between the petal?like SnSe and the rGO formed a robust three?dimensional mesh structure, which served to reinforce the overall structural integrity of the catalyst, preventing its collapse. Based on this, the optimized SnSe/10%rGO catalyst (10rGO means that the mass fraction of rGO is 10%) exhibited excellent ORR activity with a limiting current density of 3.79 mA/cm2, an onset voltage (vs.RHE) of 0.85 V, and an electron transfer number of 3.10. Meanwhile, the SnSe/10%rGO catalyst performed the electrocatalysis long?term stability superior that of commercial 20%Pt/C (20%Pt means that the mass fraction of Pt is 20%) with the current density remaining 81.15% of the start value after 20 000 s of reaction. The present work offers insights into the preparation of non?precious metal cathode oxygen reduction catalytic materials for fuel cells.

2024, 44 (6): 42-50. DOI: 10.12422/j.issn.1672-6952.2024.06.006
Cyclodextrin Crosslinked Poly (Triphenyl Fluorene Piperidine) Anion Exchange Membrane
Xinli ZHANG, Long HAN, Shoutao GONG, Fengxiang ZHANG
Abstract1823)   HTML11)    PDF (1984KB)(851)      

Poly (arylpiperidine) anion exchange membrane (AEM) has been widely studied in anion exchange membrane fuel cells (AEMFCs) and alkaline electrolyzed water due to their excellent alkali resistance and stability. In this work, poly (triphenyl fluorene piperidine) (PTDP) AEM was prepared from 9,9?diphenylfluorene monomer with distorted large volume structure, and hydrophilic large volume cyclodextrin crosslinking agent (β?CD?Br7) was introduced on this basis, which can control the microphase separation structure in AEMs. The prepared qPTDP?10?CD5 AEM with 5% crosslinker content reached a high conductivity (130.2 mS/cm at 80 ℃). After the membrane was treated in 1 mol/L NaOH at 80 ℃ for 2 000 h, its conductivity retention was 94.3%, showing good stability. The H2/O2 fuel cell assembled with qPTDP?10?CD5 yielded a peak power density of 1 490 mW/cm2 at 80 ℃. In the durability test, the fuel cell assembled with qPTDP?10?CD5 showed a voltage retention rate of 89.7% after 30 h, showing good cell performance.

2024, 44 (6): 23-31. DOI: 10.12422/j.issn.1672-6952.2024.06.004
Synergistic Effect of SDBS and APG1214 on Heavy Oil
Wenfei WAN, Guiyang MA, Chunyang ZANG, Di AO
Abstract1796)   HTML9)    PDF (1980KB)(273)      

Using the synergistic effect of surfactant mixture to reduce oil?water interfacial tension and crude oil viscosity is an important method to improve oil recovery in recent years.The content of each component of crude oil produced from each oil field is different, so it is necessary to screen the suitable surfactant according to the component content.In this paper, the interfacial tension and emulsifying properties of sodium dodecyl benzene sulfonate (SDBS) and lauryl glucoside (APG1214) in Liaohe crude oil were studied by rotating drop interfacial tensiometer and bottle test method. The interfacial tension was studied by changing different compounding ratios, salinity and pH value, and the viscosity of the emulsion was measured by viscometer.The results show that the interfacial tension between oil and water can be reduced and the stable heavy oil emulsion can be formed by adding proper amount of inorganic salt in combination of surfactant.

2024, 44 (5): 15-21. DOI: 10.12422/j.issn.1672-6952.2024.05.003
Preparation and Characterization of Semi⁃Interpenetrating Network Anion Exchange Membranes for Fuel Cells
Jing LU, Lulu WANG, Hui GAO, Jilin WANG
Abstract1753)   HTML11)    PDF (2450KB)(217)      

A series of novel anion exchange membranes (AEMs) were prepared by constructing semi?interpenetrating polymer networks (sIPN) based on imidazole functional brominated polyphenyl ether (ImF?BPPO) and quaternary ammonium polyvinyl alcohol (QPVA). The effects of different contents of QPVA on the comprehensive properties of the composite membranes were systematically studied, the structure of the series composite membranes was analyzed by 1H?NMR and FT?IR, and the morphology of composite membrane was investigated by SEM, and the ion exchange capacity, water uptake and conductivity and other properties of the composite membranes were tested. The results show that the prepared series of composite membranes have good compatibility and no obvious phase separation phenomenon. When the mass fraction of QPVA was 40%, the water uptake and swelling rate of the composite membrane were 58.2% and 24.6%, respectively. At 80 ℃, the conductivity of the composite membrane reached 67.24 mS/cm. After soaking in 6 mol/L KOH alkaline solution for 168 h, about 90% of the initial conductivity was still retained, indicating that the membrane had good conductivity and alkali resistance stability.

2024, 44 (6): 51-58. DOI: 10.12422/j.issn.1672-6952.2024.06.007
Performance Analysis of the Kalina⁃Three⁃Stage Organic Rankine Combined Cycle Based on LNG Cold Energy
Xuyang CHEN, Fan YANG, Wenquan JIANG, Haotian ZHENG, Dawei TIAN
Abstract1658)   HTML11)    PDF (2059KB)(900)      

A power cycle (KC-TORC) combining a Kalina cycle and a three?stage organic Rankine is proposed to address the problems of large flue gas discharge with high temperature and low flue gas outlet temperature that is easy to cause corrosion of industrial pipelines in the industrial production process. A circulation system was constructed by using the method of thermodynamic simulation, taking industrial flue gas as the heat source and liquefied natural gas (LNG) as the cold source,and the effects of kalina cycle evaporation temperature, LNG post?pump pressure and three?stage organic Rankine cycle (ORC) turbine inlet temperature on the thermodynamic performance were analyzed by varying the flue gas outlet temperature. The results show that the maximum exergy efficiency is 62.89% at a flue gas outlet temperature of 30 ℃ and a Kalina cycle evaporation temperature of 112 ℃. The maximum thermal efficiency is 32.09% at a flue gas outlet temperature of 120 ℃ and three?stage ORC turbine inlet temperature of 160 ℃, and the net output power can be up to 2.04 MW. The annual NAV could be up to 5.773×106 dollars. The KC?TORC power cycle shows good advantages in thermodynamic and economic aspects, which is important for environmental protection.

2024, 44 (5): 90-96. DOI: 10.12422/j.issn.1672-6952.2024.05.013
Finite Element Analysis of Thread Tightness of Double⁃Ferrule Joint Based on ANSYS
Yundong YUAN, Jianqiang HAN, Guangjian ZHANG, Chunhao YU, Zhendong HAO, Guanghong DAI, YILINAER·Tuerxun, Kaifeng FAN
Abstract1586)   HTML13)    PDF (3304KB)(365)      

Card sleeve joints are widely used in the connection of hydraulic and pneumatic equipment such as oil and gas pipelines, and its connection reliability has an important impact on the safety of oil and gas pipelines. However, there is no report on the influence of external working conditions on the stress characteristics of the thread of card sleeve joints in oilfield ground pipelines. A three?dimensional model of the double card sleeve joint was established using SolidWorks software; The maximum equivalent stress (Von Mises stress) of the sleeve joint was numerically analyzed using ANSYS finite element software. The results indicate that within the yield limit, the greater the axial force, the better the sealing performance of the sleeve joint, while the internal pressure has little effect on the sealing of the pipe joint, and the risk of thread sticking due to excessive stress can be ignored; The influence of thread parameters on sealing performance is significant; The optimal pitch and number of threads for a sleeve joint with an outer diameter of 12 mm and an inner diameter of 9 mm are 1.5 mm and 7, respectively. The research results can provide theoretical basis and reference for the optimization of structural performance and scientific operation in the assembly process of card sleeve joints, which has important engineering significance.

2024, 44 (5): 82-89. DOI: 10.12422/j.issn.1672-6952.2024.05.012
Adaptability Analysis of Synergistic Enhanced Oil Recovery Techniques Through Chemical Flooding and Infill Well Patterns in Offshore Oilfields
Engao TANG, Lezhong LI, Wensheng ZHOU, Gongchang WANG, Zenghua ZHANG, Yi JIN, Erlong YANG
Abstract1546)   HTML10)    PDF (3551KB)(751)      

Offshore oilfield development faces complex geological conditions and high development costs, with limited platform lifespans and well locations. These constraints reduce the effectiveness of chemical flooding for enhancing oil recovery. Based on the geological characteristics of offshore oilfields, and drawing on the results of synergistic enhanced oil recovery (EOR) techniques combining chemical flooding and infill well patterns in Daqing, Dagang, and Shengli oilfields, this study evaluates the synergistic potential of chemical flooding agents, well pattern infill, and layer adjustment. The synergy between chemical flooding and infill well pattern optimization for enhanced oil recovery was established. Relying on numerical simulation, an optimized design for synergistic chemical flooding and infill well patterns was developed for the SZ36?1 oilfield. The effects of reservoir permeability, permeability heterogeneity, and crude oil viscosity on enhanced oil recovery potential were clarified, along with the establishment of corresponding boundaries. The study demonstrated that after the original inverted nine?spot well pattern is encrypted into an oblique inverted nine?spot well pattern, the well spacing is reduced by half. Combined with polymer flooding technology, the recovery rate can be increased by 9.8%, which is 3.4% higher than the sum of the recovery increases achieved by independent water flooding and polymer flooding. This result confirms that by utilizing the synergistic effect of chemical flooding and infill well pattern technology in offshore oilfields, the sweep efficiency of the oil displacement system can be significantly enhanced, leading to a substantial increase in recovery rates and optimization of production capacity.

2025, 45 (1): 65-73. DOI: 10.12422/j.issn.1672-6952.2025.01.009
Effect of Anion Non⁃Ion Complex System on Emulsification Property of Heavy Oil
Dong ZHANG, Guiyang MA
Abstract1463)   HTML10)    PDF (754KB)(140)      

The effects of a single emulsifier octylphenol ethoxylate 10 (OP?10) and its compounding system on emulsion stability, rheology and the effect of organic bases on the interfacial tension were investigated. The results show that the optimal binary composition is as follows: The mass fraction of OP?10 is 1% and the mass fraction of sodium oleate (YSN) is 0.6%.The optimum compounding method can produce stable emulsion with thick oil, and the viscosity can be reduced from 1 168.22 mPa?s to 57.57 mPa?s, with the viscosity reduction rate of 91.03% and the water separation rate of 21.33%. The organobase triethanolamine (TEOA) can reduce the interfacial tension of the compounded system to the 10-2 mN/m level.

2024, 44 (6): 17-22. DOI: 10.12422/j.issn.1672-6952.2024.06.003
Study on Microscopic Mechanism of Heavy Oil High Viscosity in Typical Heavy Oil Reservoirs in Bohai Sea
Jinxiang LIU, Zhe LI, Jingbin HAO, Song GE, Qiuxia WANG, Wei ZHENG, Xiangguo LU, Jianhong YANG
Abstract1439)   HTML11)    PDF (2715KB)(165)      

The study of the micro high viscosity mechanism of heavy oil is of great significance for the efficient development of Bohai heavy oil. Therefore, aiming at the typical heavy oil reservoirs in Bohai Sea, the microscopic mechanism of high viscosity of heavy oil is analyzed and studied from the aspects of viscosity?temperature relationship, crude oil composition and component polarity, heteroatom distribution and asphaltene aggregate structure. The results show that compared with N oilfield in Bohai Sea, the content of alkanes and aromatics in L oilfield in Bohai Sea is lower, and the quality score of resins and asphaltenes is higher, reaching 29.95% and 9.76% (23.25% and 6.59% in N oilfield). The quality score of heteroatoms such as O,N and S are high, and the relative molecular mass of resins and asphaltenes are also high. The polarity of each component is strong, and the dipole moments of resins and asphaltenes reach 14.01 D and 17.94 D, respectively (9.12 D and 12.25 D in N oilfield ). These will lead to stronger intermolecular forces and stronger intermolecular association between resins and asphaltenes. The smaller asphaltene molecular spacing and the denser aggregate structure,which will eventually lead to higher viscosity of crude oil.

2024, 44 (6): 65-72. DOI: 10.12422/j.issn.1672-6952.2024.06.009
Research Progress of Flexible Proton Exchange Membranes
Weimin GAO, Jilin WANG, Quantong CHE
Abstract1420)   HTML12)    PDF (3864KB)(235)      

At present, the demand for clean energy is constantly increasing to achieve sustainable development of human society. Among numerous new energy storage and conversion devices, proton exchange membrane fuel cells (PEMFCs) can directly convert chemical energy into electrical energy. Therefore, PEMFCs have been considered to have the merits of high efficiency, safety and wide application, etc. The proton exchange membrane is the core component of PEMFCs. However, the trade?off of proton conductivity and mechanical strength has become the primary challenge to hinder the development of proton exchange membranes. Although significant progress has been made in improving the single performance, the mutual constraints of key technical properties restrict the development of proton exchange membranes. Most importantly, the road to the commercialization of fuel cells is thus tortuous. We believe that the development of flexible proton exchange membranes is a main strategy to solve this technical challenge. Based on this, this article summarizes the recent research progress on flexible proton exchange membranes,including flexible polymer materials, structural optimization, and flexible additive design, expecting to provide inspiration for breaking through the performance bottleneck of flexible proton exchange membranes.

2024, 44 (6): 32-41. DOI: 10.12422/j.issn.1672-6952.2024.06.005
Key Technologies for Efficient Tapping and Testing of the Xujiahe Formation Gas Reservoir in Northeastern Sichuan
Qing FAN, Shengguo LIU, Qiang WU, Yunhui YANG
Abstract1345)   HTML6)    PDF (679KB)(145)      

The terrestrial gas reservoirs in the northeastern Sichuan region have reserves of over 100 billion cubic meters in the Xujiahe River. In the early stages, small?scale sand fracturing or acid fracturing were mainly used for production, but no significant breakthrough in productivity was achieved. Due to the tight and high fracture pressure of the Xujiahe reservoir, the construction displacement is limited, making it difficult to add sand and resulting in poor transformation effects. By conducting research on the guarantee technology for the operation of potential tapping wells, the Xujiahe potential tapping well wellbore treatment and fine pressure control technology have been developed, which has solved the problems of wellbore control and pressure control during construction operations caused by the coexistence of original test layers and large differences in ground pressure coefficients. The idea of tapping the potential of multiple layers in a single pipeline column has been proposed, forming a combination of large?diameter oil pipes and segmented fracturing pipelines with packers. The interactive operation of 140.0 MPa and 105.0 MPa wellheads meets the requirements of ultra?high pressure large?scale sand addition operations and later production. The application has been carried out in YB6, YL15, and YL171 wells, successfully achieving potential tapping operations in three old wells. A layer by layer fracturing of the four reservoirs was completed in the YL171 well using a single string, resulting in a production of 32 5000 cubic meters per day at a hydraulic pressure of 71.0 MPa.

2024, 44 (5): 66-71. DOI: 10.12422/j.issn.1672-6952.2024.05.010
Visible Light Promoted Synthesis of 3⁃Sulphonyl Coumarins from Alkyoates
Yiyue WANG, Yuqian SUN, Baokuan CHEN, Jing SUN
Abstract1329)   HTML14)    PDF (660KB)(297)      

Coumarins are a key class of heterocyclic lactone compounds, which have good biological activity. 3?sulfonyl coumarin derivatives were prepared by visible light promoted reaction of benzoalkynyl esters with sodium benzenesulfonate, and their reaction mechanism was studied. The results showed that under mild reaction conditions, 3?sulfonyl coumarin derivatives can be synthesized with moderate to good yields using sodium benzenesulfite as the precursor of sulfonyl radicals and persulfate as the oxidant through a cascade radical addition cyclization strategy, providing a concise, green, and efficient synthetic route for the preparation of functionalized coumarin derivatives.

2024, 44 (6): 10-16. DOI: 10.12422/j.issn.1672-6952.2024.06.002
Study on the Temperature Drop During the Process of Forward and Reverse Transportation of A⁃Sai Crude Oil Pipeline at Low Throughput
Peijuan SHANG, Jipu HAN, Yijie WANG, Jingru TIAN, Qiyu HUANG, Xianyin ZHOU
Abstract1314)   HTML12)    PDF (1167KB)(139)      

The forward and reverse transportation simulation model was established by using SPS simulation software to simulate the forward and reverse operation process of A?Sai crude oil pipeline at low throughput. The change law of the oil temperature along the pipeline during the process of forward and reverse transportation is studied. The results show that the oil temperature along the pipeline decreases gradually under the steady state of forward transportation. The oil temperature drops first and then increases at the beginning of the reverse transportation, and then drops gradually after reaching the steady state.The oil temperature at the reverse inlet station decreases first and then increases slightly, and finally tends to be stable. The lowest temperature of crude oil in the process of forward and reverse transportation is the arrival temperature when the remaining crude oil is completely pushed out of the pipeline. In addition, the influence of inverse throughput on oil temperature drop during the inverse transportation was analyzed. The higher the inverse throughput is, the higher the lowest oil temperature in the process of inverse transportation is, and the faster the stable state of inverse transportation reaches. The temperature change of forward and reverse transportation obtained by SPS simulation analysis can provide certain basis for making the forward and reverse transportation scheme of A?Sai pipeline.

2024, 44 (6): 59-64. DOI: 10.12422/j.issn.1672-6952.2024.06.008
Research Progress of Molybdenum Disulfide Doped Hydrogen Evolution Electrocatalyst
Shaolong LI, Qiao HAN, Tianfeng CAI, Zhanxu YANG
Abstract1302)   HTML71)    PDF (3413KB)(645)      

Hydrogen is regarded as a safe and sustainable supply of clean energy, which plays a very important role in alleviating the shortage of fossil energy and environmental pollution. Electrocatalytic water splitting is one of the effective ways to produce hydrogen. MoS2 has been widely used in electrocatalytic hydrogen evolution reaction because of its low Δ GH. This article summarizes the methods for improving the electrocatalytic hydrogen evolution performance of MoS2, including inducing phase transition or exposing more catalytic active sites in MoS2 through noble metal doping, and exposing more active sites or generating sulfur vacancies in MoS2 through transition metal and non?metal doping. Meanwhile, some suggestions have been put forward to improve the catalytic performance of MoS2.

2025, 45 (1): 1-9. DOI: 10.12422/j.issn.1672-6952.2025.01.001
Mechanical Properties of Graphene/Polypropylene Composites
Zhen XUE, Jianhua QIAN, Zenghua ZHAO
Abstract1294)   HTML13)    PDF (3987KB)(256)      

In order to explore the preparation process of graphene?reinforced composite materials with industrial development prospects, graphene/polypropylene composite materials were prepared using the melt blending method, and the graphene reinforcement mechanism was analyzed through experimental and computational analysis. The results indicate that through melt blending, graphene can be uniformly dispersed in the matrix. The tensile strength of the composite material with a graphene mass fraction of 0.5% is 50.3 MPa. When the mass fraction of graphene is 4.0%, the elastic modulus and tensile strength of the composites are increase by 77.1% and 22.5%, respectively, compared to the polypropylene matrix alone. The uniform dispersion of graphene and the interaction between graphene and the polypropylene matrix enable effective stress transfer at the graphene/polypropylene interface.

2025, 45 (1): 27-32. DOI: 10.12422/j.issn.1672-6952.2025.01.004
Review on the Digitalization and Intelligent Development of Physical Simulation Methods for Hydraulic Fracturing
Bing HOU, Zhihao LIAO, Zhuang ZHANG, Jialun LUO, Yiwen JU, Wen WANG
Abstract1272)   HTML34)    PDF (1549KB)(447)      

Traditional physical simulation method of hydraulic fracturing has certain limitations in quantitatively studying fracture morphology and dynamically monitoring fracture propagation paths. It is challenging to quantitatively evaluate the dynamic processes of fracture initiation and propagation. Therefore, there is an urgent need to develop digital and intelligent technologies to enhance the accuracy of hydraulic fracturing physical simulation methods. Systematically investigated the method principle, research status and development direction of digital core reconstruction, acoustic emission positioning and distributed optical fiber monitoring, explored the data acquisition, fracture reconstruction and data interpretation in the process of multi?method joint monitoring experiment, and clarified the sample preparation, method combination and application scope in hydraulic fracturing physical simulation. The characteristics of non?plane, asymmetrical and unbalanced initiation and propagation of true triaxial hydraulic fracturing physical simulation are pointed out and outlooks are presented with the aim of helping researchers deeply understand the dynamic process of complex fracture expansion. Digital and intelligent hydraulic fracturing physical simulation methods are the future research trend. The research results can be used as reference for the development of hydraulic fracturing physical simulation technology, experimental scheme design.

2025, 45 (2): 1-12. DOI: 10.12422/j.issn.1672-6952.2025.02.001
Adsorption Performance of Fe 3+Modified Hydrotalcite for Fluoride in Wastewater
Bo YIN, Zheng LI, Guizhou GU, Xiyang YU, Hui WANG, Xixi XU
Abstract1266)   HTML546)    PDF (1706KB)(482)      

Two adsorbents, magnesium aluminum calcined hydrotalcite (MgAl LDO) and magnesium aluminum iron calcined hydrotalcite (MgAlFe LDO), were synthesized by coprecipitation method, and characterized by X?ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FT?IR) analysis and BET specific surface area test analysis, etc. The adsorption performance of the two adsorbents for fluoride in wastewater was also studied. The effects of the ratio of metal substances, calcination temperature, initial mass concentration of F-, and adsorbent dosage on the removal efficiency of fluoride in wastewater were investigated. The results showed that MgAlFe LDO had a uniform pore structure distribution, a large specific surface area, and a higher adsorption capacity for fluoride in wastewater than that of MgAl LDO. When n (Mg2+)/n (Al3+)/n (Fe3+)=3.0∶0.6∶0.4, the initial mass concentration of F- was 20 mg/L, the calcination temperature was 300 ℃, and the dosage of MgAlFe LDO was 0.4 g, the removal effect of fluoride in wastewater was optimal. After 2 hours of reaction, the removal rate of fluoride in the wastewater was 98.35%.

2024, 44 (6): 1-9. DOI: 10.12422/j.issn.1672-6952.2024.06.001
Study on the Corrosion Resistance of Amorphous NiP⁃WC Composite Coating
Xinfu ZHANG, Bo HE, Liang ZHOU, Yong HE, Li NI, Mingbin SU, Wei LIU, Ji CHEN
Abstract1213)   HTML7)    PDF (2682KB)(174)      

An amorphous NiP?WC composite coating was prepared on a copper substrate by chemical plating. The corrosion resistance of the coating was studied in a NaCl solution with a mass fraction of 3.5% and a 1 mol/L hydrochloric acid solution. The surface morphology, composition, and microstructure of the coating were characterized by scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), and X?ray diffraction (XRD). The corrosion resistance of the coating was analyzed by potentiodynamic polarization and impedance spectroscopy. The results show that in a NaCl solution with a mass fraction of 3.5%, the self corrosion potential of NiP?WC coating shifted approximately 111 mV higher as compared to amorphous NiP coating, resulting in a decrease of approximately 68.8% in self corrosion current density and an increase of approximately 6.7 times in charge transfer resistance. Soaking in 1 mol/L hydrochloric acid solution, the corrosion rate of NiP?WC coating decreased by about an order of magnitude compared to NiP coating, indicating that uniformly distributed WC particles can significantly improve the corrosion resistance of amorphous NiP.

2025, 45 (1): 90-96. DOI: 10.12422/j.issn.1672-6952.2025.01.012
Development of Pipeline Leakage Monitoring Simulation System Based on Virtual Instrument Technology
Mengna XU, Ruixin BAO, Yingrui SUN, Xiangguang SUN, Yuanzhong QIN
Abstract1137)   HTML13)    PDF (2283KB)(522)      

As the global energy structure transitions toward cleaner and more sustainable sources, natural gas, as a low?carbon and environmentally friendly fossil fuel, continues to see increasing consumption. However, with the ongoing expansion of natural gas pipeline networks, the growing coverage areas, and the significant increases in both transportation distances and volumes, the safe operation of pipelines is facing unprecedented challenges, with pipeline leakage emerging as a particularly critical issue. In response to the long?term monitoring needs of oil and gas pipeline leaks, based on the principle of negative pressure wave detection, a highly efficient and reliable pipeline leakage monitoring simulation system was developed using LabVIEW, a powerful graphical programming platform. This system incorporates advanced sensor networks, data communication technologies, and signal processing algorithms. It was used for the leakage monitoring of oil and gas pipelines, and its performance was verified through experiments. The results show that the system is capable of detecting pipeline leakage and rapidly locating leakage points through efficient algorithms, providing crucial information for timely repair and ensuring the safety and stability of oil and gas pipelines.

2025, 45 (1): 74-81. DOI: 10.12422/j.issn.1672-6952.2025.01.010
Research Progress on Interfacial Properties of Carbon Fiber Composites Modified by Porous Materials
Bin SUN, Xiaoyu LI, Peng CHEN, Zhaolong LIAN, Caifeng WANG
Abstract1134)   HTML14)    PDF (1838KB)(539)      

Carbon fiber reinforced epoxy resin matrix composites with light weight and high strength are widely used in aerospace, transportation, energy and other fields. The composition and structure of the interface are the main factors affecting the physical and chemical properties of composites. Surface modification of carbon fiber is one of the most effective ways to enhance the interfacial properties and mechanical properties of carbon fiber composites. In recent years, it's been found that porous materials with large specific surface area and diverse structures can improve the surface energy and surface roughness of carbon fibers and improve the interfacial properties of composites. This paper briefly introduces the modification of carbon fiber with different kinds of porous materials in recent years, and summarizes the interfacial strengthening effect of carbon fiber composites, which provides reference significance for the future research of porous materials reinforced carbon fiber composites.

2025, 45 (1): 33-40. DOI: 10.12422/j.issn.1672-6952.2025.01.005
Influencing Factors of Intrinsic Structure and Sodium Storage Properties of Carbonized Petroleum Coke
Jingwen QU, Haile CAI, Yongyi SONG, Shudong ZHANG, Dong YAN, Rui MA
Abstract1101)   HTML8)    PDF (1970KB)(110)      

The anode materials play a crucial role in the components of sodium?ion batteries. Petroleum coke serves as an important precursor for the preparation of carbon anode for sodium?ion batteries. In this study, the effects of carbonization temperature and sulfur content on the structure of petroleum coke anode were characterized by XRD and Raman spectroscopy, and the changes of sodium storage properties for different structured anodes were analyzed. The results show that the anode has a balanced defect density and interlayer spacing and excellent conductivity, which exhibits better electrochemical performance at 1 000 ℃. The discharge capacity at a current density of 50 mA/g is 434 mA?h/g. The presence of sulfur inhibits the rearrangement and growth of carbon layer. With the increase of sulfur content of petroleum coke, the anode material exhibits higher sodium storage capacity and better cycle life and rate performance, while the initial coulomb efficiency decreases from 65% to 54%, posing significant challenges for future research.

2025, 45 (3): 34-40. DOI: 10.12422/j.issn.1672-6952.2025.03.005
Effect of Vulcanization Temperature on the Activity of NiW/Al 2O 3 Catalyst
Shasha GUO, Junhui SONG, Jihai JIN, Yanjun LIU
Abstract1096)   HTML18)    PDF (1813KB)(177)      

The influence of curing temperature on catalytic desulfurization, nitrogen and acid removal of NiW/Al2O3 hydrotreating catalyst during the curing tprocess was studied. The catalyst with incomplete curing was re?cured and its hydrogenation performance was studied. The structure of the vulcanized catalyst was characterized by physical adsorption (BET), X?ray diffraction (XRD) and X?ray photoelectron spectroscopy (XPS). The results showed that the sulfur content and degree of vulcanization on the catalyst increased with the increase of vulcanization temperature, and the carbon accumulation also increased, which led to the decrease of the specific surface area, pore volume and average pore size of the catalyst. After vulcanization, the active phase of the catalyst changed from low active W6+ and Ni2+ to high active W4+ and Ni-W-S phases. After revulcanization, the pore volume and average pore size of the catalyst decreased, while the specific surface area, sulfur and carbon contents increased. The increase in carbon deposition covered part of the active center and reduced the atomic ratio of W and Al on the catalyst surface, resulting in the aggregation of active metals in the vulcanized state and reduced the activity of the catalyst, indicating that the revulcanized catalyst was difficult to achieve complete vulcanized catalyst activity.

2025, 45 (2): 13-20. DOI: 10.12422/j.issn.1672-6952.2025.02.002
Simulation Study of Single⁃Bubble Ultrasonic Cavitation Dynamics
Jia SUN, Sheng YANG, Kaixuan GUO, Jiao YU
Abstract1096)   HTML24)    PDF (1581KB)(340)      

The kinetic properties of single?bubble ultrasonic cavitation are simulated using the finite element analysis software COMSOL Multiphysics. The motion process of a single cavitation bubble driven by ultrasonic sinusoidal, square and triangular waves when vibrating in water is simulated by solving the Rayleigh?Plesset model which takes into account the energy viscous loss and the radiation damping caused by the vibration of the spherical bubble, and the curves of the changes of bubble radius, motion velocity and kinetic energy of the bubble wall and pressure within the bubble wall are analyzed.The results show that under the same conditions, the stability of sine wave drive is the strongest; square wave drive has the best cavitation effect but the longest cavitation time; triangular wave shows the weakest cavitation effect. Driven by three types of waves, the kinetic energy of motion of the bubble wall is the largest during the first collapse, and the maximum pressure inside the bubble occurs when the bubble collapses to its minimum radius. The maximum pressure inside the bubble is the greatest when driven by sinusoidal wave compared to square wave and triangular wave.

2025, 45 (2): 76-82. DOI: 10.12422/j.issn.1672-6952.2025.02.010
Numerical Simulation Study on Leakage and Diffusion of Hydrogen⁃Doped Natural Gas Pipelines in the Comprehensive Pipe Gallery
Yeqiang JIANG, Guiyang MA, Xiangchun JIANG, Zhuo LIANG, Lufei YU
Abstract1078)   HTML8)    PDF (1942KB)(627)      

In view of the influence of different factors on the leakage and diffusion of hydrogen?doped natural gas pipelines in the pipe gallery, the leakage and diffusion model of hydrogen?doped natural gas pipelines in the pipe gallery was established by numerical simulation software, and the influence of factors such as hydrogen doping ratio, pipeline pressure,leakage hole size and the model of ventilation on the gas diffusion process was studied. The results show that the hydrogen blending ratio can affect the mass transfer ability of hydrogen?doped natural gas, and the higher the hydrogen blending ratio, the faster the diffusion rate of hydrogen?doped natural gas. The pipeline pressure and leakage hole size mainly affect the leakage gas diffusion by affecting the initial kinetic energy and leakage volume of the leakage gas, and the leakage gas diffusion range becomes larger with the increase of pipeline pressure and leakage hole size. The ventilation mode plays a dominant role in the distribution of leaked gas in the pipe gallery, and the ventilation frequency is inversely proportional to the height of the leaked gas jet.

2025, 45 (1): 59-64. DOI: 10.12422/j.issn.1672-6952.2025.01.008
Research Progress of Flexible Anion Exchange Membranes
Dan WU, Jilin WANG, Quantong CHE
Abstract1069)   HTML7)    PDF (1704KB)(386)      

Fuel cells have attracted widespread attention owing to the merits of high efficiency, high safety and wide application, etc. Therefore, fuel cells can meet the increasing requirement for clean energy in human society. Among them, anion exchange membrane fuel cells have shown broad application prospects due to the environmental friendliness, the use of non?precious metal catalysts, high safety and stability, etc. As the core component of anion exchange membrane fuel cells, anion exchange membranes can isolate the anode from the cathode and conduct hydroxide ions. Thus, the property of anion exchange membranes plays a crucial role in the performance of anion exchange membrane fuel cells. In the development process of anion exchange membranes, the low conductivity and poor hydroxide ions conductivity stability have become the key technical challenge. The development of flexible anion exchange membranes can play a positive role in promoting the further commercialization of anion exchange membrane fuel cells. Based on this, this article reviews the recent research progress on flexible anion exchange membranes from three aspects: polymer molecular chain design, structural optimization design, and new material synthesis and the composites.

2025, 45 (2): 28-37. DOI: 10.12422/j.issn.1672-6952.2025.02.004
Hydrothermal Synthesis of ZSM⁃5 Induced by Corresponding Alkaline Hydrolysis Products
Wenqi XU, Yifan LIU, Jiaxin MA, Rui WANG, Heng JIANG, Changzi JIN
Abstract1068)   HTML10)    PDF (1349KB)(349)      

ZSM?5 has been widely used in the field of petrochemical industry. The extensive use of organic templates in its conventional synthesis process has caused serious problems on environmental and cost. In this paper, the hydrothermal synthesis of ZSM?5 with tetraethyl orthosilicate, aluminum sulfate octadecahydrate and alkaline hydrolysis product of HZSM?5 as silica source, alumina source and structural directing agent, respectively, has been investigated, which aims at developing of new process for green synthesis of zeolites. The synthesized samples were characterized by a series of techniques, such as XRD, TEM, SEM, N2 physical adsorption and TG analysis. It has been shown that successful synthesis of ZSM?5 can be achieved by induction of alkaline hydrolysis product of HZSM?5 in organic template?free system. The prepared sample possesses a relative low crystallinity and specific surface area than ones from conventional process. The study in this paper has provided the chance for combination of green synthesis of zeolites and post?treatment route for synthesis of hierarchical zeolites.

2025, 45 (2): 21-27. DOI: 10.12422/j.issn.1672-6952.2025.02.003
Preparation and Properties of Superhydrophobic Textiles Based on Sol⁃Gel Method
Yao XIN, Yanru HUANG
Abstract1060)   HTML8)    PDF (11358KB)(77)      

Superhydrophobic materials have become one of the research hotspots in coating directions in recent years because of their special wetting properties. Due to their anti?icing, self?cleaning, drag reduction and other characteristics, it has a wide range of application prospects. In this paper, SA?SiO2/PPSsuperhydrophobic coatings with a thickness of about 38 μm were prepared on the surface of textile cloth using nano silica (SiO2), stearic acid (SA) and polyphenylene sulfide (PPS) as raw materials by sol?gel method. The morphology was analyzed by electron scanning microscope, and the properties of the sample coating were tested. The microcosmic properties of the coating were analyzed by molecular dynamics simulation. The results show that the water contact angle of 56%SA?SiO2/30%PPS coating is 154.8°, which shows good self?cleaning, corrosion resistance and soaping resistance. Scanning electron microscopy (SEM) analysis shows that the material has micro and nano?scale rough structure. The surface of SiO2 and SA molecules was connected by hydrogen bond. The molecular dynamics simulation was consistent with the experimental data, and the corrosion resistance of the coating was verified from the microscopic point of view.

2025, 45 (1): 41-49. DOI: 10.12422/j.issn.1672-6952.2025.01.006
Reservoir Fracture Identification Method Based on Well Logging Curves in Low⁃Permeability Sandstone Reservoirs in Qiuling Oilfield of Tuha
Zhipeng XIAO, Libo DAI, Jifan HAN, Haiwei ZUO, Jinsong XIAO, Qidong LIAN, Yulong DANG, Xiangshang ZHAO, Shenglai YANG
Abstract1049)   HTML7)    PDF (1734KB)(215)      

The low?permeability reservoir in Qiuling Oilfield of Tuha shows that the characteristics of early water discovery and rapid rise of water cut in some wells during water injection development, and dynamic analysis shows that there are dominant channels or the possibility of fractures in the reservoir. In order to further improve the development effect and enhance oil recovery, it is necessary to verify and determine the development of micro?fractures in the reservoir at the later stage of reservoir development. In this paper, based on the description of the core of a water washing inspection well, the development and distribution of reservoir fractures are studied, and a method of identifying the fracture development horizon based on logging curves are proposed. Through the analysis of logging data of two wells and the comparison of water absorption profiles, the method is proved to be feasible and reliable, and the study provides theoretical support for improving the development effect of water drive, effective utilization and recovery of remaining oil in Qiuling Oilfield of Tuha.

2025, 45 (2): 46-52. DOI: 10.12422/j.issn.1672-6952.2025.02.006
The Design of Multi⁃Channel Flame Intelligent Monitoring System Based on B/S Architecture
Ming BAN, Pengwei TIAN, Jiangtao CAO
Abstract1009)   HTML11)    PDF (3561KB)(175)      

As a high?risk area, the fire safety has always attracted much attention. Although smoke and flame alarm have been widely used, there are still problems such as single ?point detection and easy environmental impact. In response to such problems, a multi?way flame smart video monitoring system based on the B/S architecture is designed and implemented, and it is presented in the form of a web system. In the system, an improved YOLOV5 flame detection algorithm is integrated. The Ghost convolution is used to replace in conventional convolution to achieve the lightweight of the network, and the improved attention mechanism modules and small target detection anchor frame is added to enhance small target detection ability. Finally, the flame movement information extracted from the Optical flow network and the original flame data is sent into the improved YOLOV5 flame detection algorithm to further improve the detection accuracy of the flame. A large number of on?site test proves that the system can identify and locate the flames in the plant in real time. The detecting frame rate can reach 15 ms/frame, and the detection rate reaches 100%, which has high stability. An efficient and reliable fire monitoring solution is provided for the chemical industry.

2025, 45 (2): 83-89. DOI: 10.12422/j.issn.1672-6952.2025.02.011
Research Progress on Combined Remediation Technologies and Applications for Petroleum⁃Contaminated Soils
Hailin MA, Zhiping FAN, Bo WANG, Siyu WANG, Chengjie SUN
Abstract1008)   HTML7)    PDF (3170KB)(184)      

In the process of oil exploitation, processing, storage and transportation, the total petroleum hydrocarbon (TPH) released into the soil not only changes the physical and chemical properties of the soil, but also seriously affects the quality of the water environment through the process of migration and transformation. Addressing the environmental issue of petroleum?contaminated soils, the development of efficient, green, and environmentally friendly remediation technologies has become a critical need in the industry. This paper reviews the main remediation technologies for petroleum?contaminated soils based on current domestic and international research. The study showed that physical methods are suitable for remediating soils contaminated with highly volatile and highly permeable petroleum, chemical methods are appropriate for treating severely and recalcitrantly contaminated soils, and biological methods are more environmentally friendly and better suited for treating mildly contaminated soils. By comparing the principles and application ranges of different remediation technologies, it is evident that combined remediation technologies offer strong versatility and widespread applicability. This paper also explores future trends in the development of green and environmentally friendly remediation technologies for petroleum?contaminated soils, aiming to provide a reference for practical applications in soil remediation.

2025, 45 (3): 18-25. DOI: 10.12422/j.issn.1672-6952.2025.03.003
Advancements in Fault Detection and Intelligent Diagnostics for Wastewater Treatment Processes
Wei ZOU, Shuang LI, Huiqiang MA
Abstract1007)   HTML19)    PDF (627KB)(241)      

As the regulations for the upgrading and transformation of wastewater treatment plants have become increasingly stringent, the process flow of wastewater treatment has gradually lengthened and become more complex. Addressing how to intelligently monitor operational conditions of process equipment and enhance fault management has emerged as a hot research topic due to the significant safety incidents and environmental pollution events that faults in wastewater treatment systems can cause. This paper starts by analyzing the characteristics of wastewater treatment process flows and the main types of faults. It comprehensively reviews the latest achievements and progress in fault detection and diagnosis in wastewater treatment processes both domestically and internationally. It summarizes three types of fault detection and diagnostic methods: model?based, domain experience?based, and data?driven approaches. The paper evaluates the current applications, strengths, and weaknesses of these wastewater treatment process fault detection and intelligent diagnostic methods, identifies existing problems, and anticipates future research directions in the technology of fault detection and intelligent diagnosis for wastewater treatment processes.

2025, 45 (3): 1-10. DOI: 10.12422/j.issn.1672-6952.2025.03.001
Preparation of GO/CS Blend Membrane for Adsorption of Bilirubin
Xinyu WANG, Pengfei KONG, Zhongyan WANG, Feixue LIANG, Jia JU
Abstract1004)   HTML11)    PDF (2659KB)(70)      

In order to solve the problems of poor blood compatibility and low adsorption capacity of chitosan (CS) when using graphene oxide (GO) alone, a graphene oxide/chitosan blend membrane (GO/CS membrane) was prepared. Microscopic morphology and composition analysis were conducted using SEM and FTIR, and bilirubin adsorption experiments were carried out on GO/CS membranes. The results showed that when the mass fraction of GO in the casting solution was 3%, the adsorption capacity of GO/CS membrane for bilirubin was optimal. The absorption intensity of C=O belonging to the amide group increases near 1 650 cm-1, while the stretching vibration peak of -NH2 at 3 353 cm-1 and the bending vibration peak of N-H at 1 570 cm-1 weaken simultaneously. Additionally, there is no stretching vibration peak of carboxyl group C=O near 718 cm-1, indicating that an amide reaction has occurred between GO and CS molecules, and the GO/CS membrane has been successfully prepared. Under the conditions of a reaction temperature of 37 ℃ and an adsorption time of 120 min, the GO/CS membrane exhibits the best bilirubin adsorption effect, with a saturated adsorption capacity of 77.8 mg/g. Increasing the mass concentration of bilirubin and lowering the pH under alkaline conditions are both beneficial for adsorption. Increasing the ionic strength of the solution or the mass concentration of bovine serum albumin is not conducive to the adsorption of bilirubin.

2025, 45 (3): 11-17. DOI: 10.12422/j.issn.1672-6952.2025.03.002
Structural Optimization of a Gas Distributor of Vertical Adsorption Tower Based on CFD
Bingchao GUO, Yongfei YAN, Cunlei LI, Yiwan NING, Feng GU
Abstract983)   HTML12)    PDF (2084KB)(265)      

The vertical adsorption tower is crucial for carbon dioxide removal from flue gas, but its complex and variable adsorption process poses challenges for optimal production. Achieving uniform gas distribution is essential, prompting the evaluation of various gas distributors via computational fluid dynamics (CFD). Four types were compared: no distributor, conical, truncated cone, and a combination of sieve plate with baffle. Results were assessed based on velocity vector smoothness and curve uniformity. A single sieve plate resulted in non?uniform airflow concentrated at the tower center. Types Ⅰ and Ⅱ improved flow but with uneven distribution. Type Ⅲ, featuring a sieve plate and baffle, significantly enhanced uniformity. Optimal parameters identified were a baffle diameter (d) of 100 mm and a distance (h) of 150 mm from sieve plate to air inlet. This configuration achieved the most uniform airflow distribution, demonstrating superior effectiveness in carbon dioxide adsorption processes.

2025, 45 (2): 61-67. DOI: 10.12422/j.issn.1672-6952.2025.02.008
Adsorption of Tetracycline in Water by Cu⁃Al Layered Bimetallic Biochar
Yani TANG, Ruiming YANG, Jingwen LI, Chao FEI, Bo WANG
Abstract981)   HTML14)    PDF (1528KB)(265)      

The pollution of tetracycline antibiotics in the water environment is increasingly serious, and the effective removal of residual antibiotics in water is an urgent problem to be solved. The co?precipitation method was used to prepare Cu?Al layered double hydroxides biochar composites (CuAl?LDH@BC) intending to remove tetracycline hydrochloride (TCH) from water. The physicochemical properties of the CuAl?LDH@BC surface were analyzed by SEM, XRD, and FTIR, and the adsorption performance of the tetracycline hydrochloride solution was revealed. The experimental results show that the adsorption process is more consistent with the quasi?second?order kinetic model and Langmuir model, and the maximum adsorption capacity of TCH is 78.68 mg/g at 298 K, and the neutral condition CuAl?LDH@BC has the best removal effect on TCH, which has strong anti?interference ability in water environment. The mechanisms involved in the adsorption of TCH by CuAl?LDH@BC may include hydrogen bonding, surface complexation, π-π interaction, and electrostatic interaction. The results show that Cu?Al layered double hydroxides and biochar composites, as low?cost and high?efficiency adsorbents, have a broad application prospect in the adsorption of tetracycline antibiotics in water.

2025, 45 (1): 19-26. DOI: 10.12422/j.issn.1672-6952.2025.01.003
Analysis of Wellbore Instability Characteristics of Fractured Shale Formation under Thermal⁃Hydraulic⁃Mechanical⁃Chemical Coupling
Pingtao SUN, Guochang DONG, Lile LI, Jiping DING, Songcai HAN
Abstract977)   HTML10)    PDF (5471KB)(57)      

Wellbore instability is easy to occur when drilling fractured shale formation. Based on mechanical experiments, this paper investigated the weakening law of mechanical properties of shale soaked in drilling fluid.Considering the influence of stress?pressure?temperature?solute concentration disturbance and natural fractures, a multi?field coupled thermal?hydraulic?mechanical?chemical wellbore stability analysis model of fractured shale formation was established.Based on the characteristics of wellbore instability, the window chart of safe drilling density in fractured shale formation with different rock strength parameters is established. The results show that with the increase of drilling fluid soaking time, the strength parameters and elastic parameters of shale deteriorate exponentially. Considering the non?uniform distribution of physical fields around the well after the development of natural fractures, the stress concentration at the crack tip leads to the collapse and tensile failure zone toward it. Increase of horizontal in?situ stress difference and fluid pressure difference will enlarge the tensile and collapse failure zone, and the increase of solute concentration difference will help reduce the failure risk. Increasing drilling fluid temperature has little effect on collapse failure, but it can significantly reduce the risk of tensile failure. The investigation can provide guiding suggestions for safe drilling design in fractured shale formation.

2025, 45 (4): 36-46. DOI: 10.12422/j.issn.1672-6952.2025.04.005
Preparation of Aromatic Green Rubber Filling Oil by Multistage Extraction
Junying HU, Weiwei SHI, Dongyun HAN, Yating LIU, Bin WANG, Shubin XIA
Abstract959)   HTML18)    PDF (1031KB)(107)      

Aromatic?based green rubber filler oil is prepared from furfural extraction oil of a petrochemical company by using compound solvents for secondary extraction to separate polycyclic aromatic hydrocarbons present in the oil. Three composite solvents are used for comparison, and the effects of operating conditions, such as extraction temperature and agent?oil mass ratio, on the yield and PCA mass fraction of the refined oil are investigated. A detailed compositional analysis is conducted using the alumina adsorption column method and infrared spectroscopy. The experimental results demonstrate that the optimal operating conditions are primary solvent extraction at 70 ℃ and an agent?oil mass ratio of 5∶1, and secondary solvent extraction at 50 ℃ and an agent?oil mass ratio of 2∶1. The yield of refined oil is 32.34%, the mass fraction of PCA is 2.98%, and the aromatic carbon ratio is 18.65%. These results meet the requirements outlined in EU Directive 2005/69/EC. The results demonstrate that the composite solvent significantly enhances the selectivity and solubility of the solvent, effectively removes PAHs from the oil, and ensures a high product yield and aromatic carbon ratio.

2025, 45 (4): 1-7. DOI: 10.12422/j.issn.1672-6952.2025.04.001
Fault Diagnosis of Centrifugal Compressor Based on Ontology
Xinxin ZHOU, Ruixin BAO, Xiangguang SUN, Yuanzhong QIN
Abstract953)   HTML4)    PDF (6062KB)(217)      

Centrifugal compressors are key equipment in the natural gas pipeline network of the petrochemical industry, and their high failure rate can cause significant economic losses to the affiliated enterprises. This article proposes an ontology based fault diagnosis method for centrifugal compressors. Firstly, this method takes the centrifugal compressor fault analysis reports accumulated by petrochemical enterprises as the knowledge source, extracts fault diagnosis knowledge from the knowledge source through ontology modeling, and promotes the integration, sharing, and reuse of fault diagnosis knowledge. Then, a fault diagnosis knowledge base was constructed using the ontology software Protégé, and rule?based reasoning (RBR) was implemented using the Semantic Web Rule Language (SWRL). The knowledge was stored and queried using the software Neo4j. The effectiveness of this fault diagnosis method has been confirmed through testing the oil system composed of centrifugal compressors. The results show that this method improves the application efficiency of fault knowledge and provides a high?quality knowledge foundation for the diagnosis and decision?making of centrifugal compressors.

2025, 45 (3): 72-81. DOI: 10.12422/j.issn.1672-6952.2025.03.010
Performance of Carrier Hollow Microsphere Silver Doped Titanium Dioxide Photocatalyst and First⁃Principles Analysis
Guodong HAO, Haoxuan SUN, Cong LI
Abstract952)   HTML10)    PDF (2751KB)(160)      

Silver?doped powders with n(Ag+)/n(Ti4+) of 0.001、0.003、0.005、0.010、0.030 and 0.050 and ceramic hollow microspheres loaded with titanium dioxide photocatalyst were prepared by sol?gel method. The prepared catalysts were characterized by SEM, XRD and Uv?Vis DRS, and their photocatalytic properties were tested under xenon lamp light source. The doping mechanism was analyzed using first?principles calculations.The results show that the degradation rate of 0.005Ag?TiO2 powder after photocatalytic degradation of 10 mg/L methylene blue for 90 min is 76%. It is concluded that n(Ag+)/n(Ti4+)=0.005 is the best doping amount, and the degradation rate of ceramic hollow microsphere supported catalyst for 90 min is 97%. Ag doping can introduce impurity energy levels in the TiO2 system, so that the valence band electrons can reach the conduction band by hierarchical transition. The calculation results are consistent with the experimental results.

2025, 45 (2): 38-45. DOI: 10.12422/j.issn.1672-6952.2025.02.005
Optimization of Growth and Degradation Conditions of Brucella Intermedia and Analysis of Its Wax Control Effect on Crude Oil
Hui WANG, Haijuan ZHANG, Weiqiang WANG, Lijian YANG
Abstract934)   HTML5)    PDF (1129KB)(206)      

During the extraction and transportation of waxy crude oil, paraffin will deposit on the wall, forming wax deposition. In recent years, microbial wax removal and prevention technology has been widely studied for its economic and environmental advantages. Five strains of bacteria were screened from crude oil sludge, and through the determination of their paraffin degradation rate and surface hydrophobicity, the bacterium B3 was selected and identified as Bruella intermedia. The experimental results showed that bacterial B3 had the best growth activity at a temperature of 40 ℃, an initial pH of 6, and a shaking table speed of 160 r/min, and had the best degradation effect on paraffin at this time. When bacteria B3 grows and metabolizes with paraffin as a carbon source, they can produce lipopeptide biosurfactants, with an emulsification coefficient of 52.5% for liquid paraffin. After 7 days of interaction between bacteria B3 and crude oil, the wax prevention rate reached 77.2%, and the viscosity reduction rate reached 50.2% at 41 ℃. Bacterial B3 can degrade paraffin, improve crude oil fluidity, and reduce wax deposition.

2025, 45 (2): 53-60. DOI: 10.12422/j.issn.1672-6952.2025.02.007
Crude Oil Dehydration Experiment and Numerical Simulation Study under the Action of High⁃Frequency Electric Field
Yejun GENG, Jue WANG, Yue YU, Li SONG, Donghai YANG, Qisen JING
Abstract934)   HTML14)    PDF (3520KB)(248)      

Dehydration of crude oil is an important step in the production and processing of crude oil. As oil fields enter the high water cut stage of production and the addition of oil recovery additives, dehydration becomes increasingly difficult, so the use of high?frequency electric fields for electric demulsification has become an effective means of dehydration. This article investigates the mechanism of electric dehydration under high?frequency electric field through static dehydration experiments and numerical simulations of droplet electric coalescence. It is found that the electric field strength, frequency, and duration have significant impacts on dehydration efficiency when treating crude oil with electric demulsification and dehydration. In the process of electric demulsification and dehydration, there is an optimal electric field frequency. After the electric field strength increases to a certain value, continuing to increase the electric field strength will actually lead to an increase in water content. After the electric field action reaches a certain time, continuing to increase the electric field action time will result in little change in the water content of crude oil; the greater the electric field strength applied to droplets in the electric field, the more likely the droplets are to deform, and the larger the diameter of the droplets, the more likely they are to deform; compared with the power frequency electric field, droplet coalescence efficiency is higher under high?frequency electric field, and droplets are more prone to coalescence. The research results provide theoretical support for the design and parameter optimization of crude oil electric dehydration units.

2025, 45 (1): 50-58. DOI: 10.12422/j.issn.1672-6952.2025.01.007