1 |
张謦文. 华庆低渗透油田难溶蜡难溶垢处理技术研究[D]. 荆州: 长江大学, 2013.
|
2 |
徐婕, 孟庆峰, 徐皓, 等. 冀中坳陷高凝油录井识别方法探讨[J]. 录井工程, 2020,31(4): 91⁃97.
|
|
XU J, MENG Q F, XU H, et al. Discussion on the method of mud logging identification for high⁃pour point oil in Jizhong Depression[J]. Mud Logging Engineering, 2020,31(4): 91⁃97.
|
3 |
孟凡怡, 杜胜男, 冯宪明, 等. 复配菌对含蜡原油含蜡量及其黏度作用分析[J]. 辽宁石油化工大学学报, 2020, 40(6): 14⁃20.
|
|
MENG F Y, DU S N, FENG X M, et al. Effect of compound bacteria on wax content and viscosity of waxy crude oil[J]. Journal of Liaoning Petrochemical University, 2020, 40(6): 14⁃20.
|
4 |
任洪达,赵永昌,马泽华,等.油田微生物技术研究及应用概述[J]. 新疆石油天然气,2022,18(1):86⁃89.
|
|
REN H D,ZHAO Y C,MA Z H,et al. Overview of oilfield microbial technology research and application[J]. Xinjiang Oil & Gas,2022,18(1):86⁃89.
|
5 |
孔令姣. 石油污染土壤的生物修复及细菌多样性研究[D]. 兰州: 兰州理工大学, 2017.
|
6 |
王莹. 一株降解石蜡菌株的分离鉴定及其表面活性剂的研究[D]. 新乡: 河南师范大学, 2016.
|
7 |
吴琳. 微生物降解烷烃的研究[D]. 大连: 大连工业大学, 2004.
|
8 |
JOO M H, KIM J Y. Characteristics of crude oil biodegradation by biosurfactant⁃producing bacterium Bacillus subtilis JK⁃1[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(2): 193⁃200.
|
9 |
PATEL D D, BHASKARAN L. Study on paraffin wax degrading ability of Pseudomonas nitroreducens isolated from oil wells of Gujarat, India[J]. Petroleum Science and Technology, 2018, 36(8): 583⁃590.
|
10 |
王卫强, 崔静, 吴尚书, 等. 复配菌对原油除蜡降黏效果分析[J]. 精细化工, 2019, 36(11): 2317⁃2322.
|
|
WANG W Q, CUI J, WU S S, et al. Effect of compound bacteria on wax removal and viscosity reduction of crude oil[J]. Fine Chemicals, 2019, 36(11): 2317⁃2322.
|
11 |
高明, 杨延红, 王朝晴. 王场油田清防蜡工艺应用及认识[J]. 江汉石油职工大学学报, 2013, 26(2): 19⁃21.
|
|
GAO M, YANG Y H, WANG C Q. On application of paraffin removal technology in Wangchang oilfield[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2013, 26(2): 19⁃21.
|
12 |
徐成斌, 王延刚, 马溪平, 等. 高盐条件下硝基苯降解菌的分离及降解特性[J]. 环境污染与防治, 2012, 34(3): 59⁃62.
|
|
XU C B, WANG Y G, MA X P, et al. Isolation and degradation characteristics of nitrobenzene degradation bacterium under hypersaline conditions[J]. Environmental Pollution and Control, 2012, 34(3): 59⁃62.
|
13 |
何汶珊,张茹,李思琦,等.1株金霉素降解菌的筛选及基于响应面法的降解条件优化[J]. 环境工程, 2022, 40(5): 53⁃58.
|
|
HE M S, ZHANG R, LI S Q, et al. Screening of a chlortetracycline⁃degrading strain and its degradation conditions optimization using response surface methodology[J]. Environmental Engineering, 2022, 40(5): 53⁃58.
|
14 |
董莹莹. 采油废水兼性厌氧降解菌的筛选和一株新菌种的多相分类学研究[D]. 桂林: 桂林理工大学, 2019.
|
15 |
王玉婷, 李存能, 石鹏亮, 等. 丹参内生镰刀菌HBG16胞外多糖发酵条件优化及其抗氧化能力[J]. 食品工业科技, 2018, 39(18): 124⁃130.
|
|
WANG Y T, LI C N, SHI P L, et al. Optimization of the fermentation conditions for production of extracellular polysaccharides of endophytic fungus HBG16 from Salvia miltiorrhiza bunge and its antioxidant capacity[J]. Science and Technology of Food Industry, 2018, 39(18): 124⁃130.
|
16 |
葛启隆,岳秀萍,王国英.一株苯酚降解菌的分离鉴定及响应面法优化其固定化[J].中国环境科学,2014,34(2):518⁃525.
|
|
GE Q L, YUE X P, WANG G Y. Isolation and identification of a phenol⁃degrading strain and optimization for its immobilization using response surface methodology[J]. China Environmental Science, 2014, 34(2): 518⁃525.
|
17 |
许莹芳. 三种有益藻类培养条件优化及种间竞争的初步研究[D]. 天津: 天津农学院, 2020.
|
18 |
邹晓爽. 苯并[a]芘好氧降解菌Acinetobacter XS⁃4的分离筛选、降解性能及机理研究[D]. 贵阳: 贵州大学, 2022.
|
19 |
殷孝谦, 戴钧明, 陈建梅, 等. 生物基1,3⁃丙二醇盐析萃取的多因素响应面优化工艺研究[J]. 合成技术及应用, 2018, 33(4): 36⁃40.
|
|
YIN X Q, DAI J M, CHEN J M, et al. Application of response surface methodology and experimental design in salting⁃out extraction of biological 1,3⁃propanediol[J]. Synthetic Technology and Application, 2018, 33(4): 36⁃40.
|
20 |
彭香玉. 石油降解混合菌的构建及其固定化修复污染土壤的研究[D]. 西安: 陕西科技大学, 2015.
|