1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652⁃657.
|
2 |
ZENG Z Q, MURUGESAN V, HAN K S, et al. Non⁃flammable electrolytes with high salt⁃to⁃solvent ratios for Li⁃ion and Li⁃metal batteries[J]. Nature Energy, 2018, 3(8): 674⁃681.
|
3 |
JIA X B, WANG J Q, LIU Y F, et al. Facilitating layered oxide cathodes based on orbital hybridization for sodium⁃ion batteries: Marvelous air stability, controllable high voltage, and anion redox chemistry[J]. Advanced Materials, 2024, 36(15): e2307938.
|
4 |
LIU Z B, SHEN J D, FENG S H, et al. Ultralow volume change of P2⁃type layered oxide cathode for Na⁃ion batteries with controlled phase transition by regulating distribution of Na+[J]. Angewandte Chemie⁃International Edition, 2021, 60(38): 20960⁃20969.
|
5 |
LIU Z B, WU J, ZENG J, et al. Co⁃free layered oxide cathode material with stable anionic redox reaction for sodium⁃ion batteries[J]. Advanced Energy Materials, 2023, 13(29): 2301471.
|
6 |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium⁃ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636⁃11682.
|
7 |
ZHANG Y, SUN W P, LUO Z Z, et al. Functionalized few⁃layer black phosphorus with super⁃wettability towards enhanced reaction kinetics for rechargeable batteries[J]. Nano Energy, 2017, 40: 576⁃586.
|
8 |
ZHENG Y H, WANG Y S, LU Y X, et al. A high⁃performance sodium⁃ion battery enhanced by macadamia shell derived hard carbon anode[J]. Nano Energy, 2017, 39: 489⁃498.
|
9 |
SENGUTTUVAN P, ROUSSE G, SEZNEC V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials, 2011, 23(18): 4109⁃4111.
|
10 |
TANG X H, XIE F, LU Y X, et al. Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes[J]. Nano Research, 2023, 16(11): 12579⁃12586.
|
11 |
ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6(1): 1501588.
|
12 |
TANG Z, ZHANG R, WANG H Y, et al. Revealing the closed pore formation of waste wood⁃derived hard carbon for advanced sodium⁃ion battery[J]. Nature Communications, 2023, 14(1): 6024.
|
13 |
ARISTOTE N T, ZOU K Y, DI A D, et al. Methods of improving the initial coulombic efficiency and rate performance of both anode and cathode materials for sodium⁃ion batteries[J]. Chinese Chemical Letters, 2022, 33(2): 730⁃742.
|
14 |
王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6): 76⁃82.
|
|
WANG Y G, WANG W. Study on preparation of tin diselenide nanosheets and their sodium storage behaviors[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(6): 76⁃82.
|
15 |
ZHANG M H, LI Y, WU F, et al. Boost sodium⁃ion batteries to commercialization: Strategies to enhance initial coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738.
|
16 |
AU H, ALPTEKIN H, JENSEN A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2020, 13(10): 3469⁃3479.
|
17 |
朱紫宸, 李雷, 王红涛, 等. 钠离子电池有机聚合物电解质的研究进展[J]. 当代化工, 2024, 53(6): 1457⁃1462.
|
|
ZHU Z C, LI L, WANG H T, et al. Research progress in organic polymer electrolytes for sodium ion batteries[J]. Contemporary Chemical Industry, 2024, 53(6): 1457⁃1462.
|
18 |
LI Q, LIU X S, TAO Y, et al. Sieving carbons promise practical anodes with extensible low⁃potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084.
|
19 |
XU X J, LI F K, ZHANG D C, et al. Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium⁃/sodium⁃ion storage[J]. Carbon Neutralization, 2023, 2(1): 54⁃62.
|
20 |
靳爱民. 韩国釜山国立大学开发高效钠离子电池负极材料[J]. 石油炼制与化工, 2023, 54(4): 14.
|
|
JIN A M. Busan national university in south Korea develops efficient negative electrode material for sodium ion batteries[J]. Petroleum Processing and Petrochemicals, 2023, 54(4): 14.
|
21 |
ZHANG H M, ZHANG W F, MING H, et al. Design advanced carbon materials from lignin⁃based interpenetrating polymer networks for high performance sodium⁃ion batteries[J]. Chemical Engineering Journal, 2018, 341: 280⁃288.
|
22 |
ARIE A A, TEKIN B, DEMIR E, et al. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery[J]. Materials Technology, 2019, 34(9): 515⁃524.
|
23 |
MURUGANANTHAM R, WANG F M, LIU W R. A green route N, S⁃doped hard carbon derived from fruit⁃peel biomass waste as an anode material for rechargeable sodium⁃ion storage applications[J]. Electrochimica Acta, 2022, 424: 140573.
|
24 |
LEE H V, HAMID S B A, ZAIN S K. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process[J]. The Scientific World Journal, 2014, 2014: 631013.
|
25 |
WAN Y H, LIU Y, CHAO D L, et al. Recent advances in hard carbon anodes with high initial coulombic efficiency for sodium⁃ion batteries[J]. Nano Materials Science, 2023, 5(2): 189⁃201.
|
26 |
XIE F, XU Z, GUO Z Y, et al. Achieving high initial coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose[J]. Carbon Energy, 2022, 4(5): 914⁃923.
|
27 |
ZHANG X, DONG X L, QIU X, et al. Extended low⁃voltage plateau capacity of hard carbon spheres anode for sodium ion batteries[J]. Journal of Power Sources, 2020, 476: 228550.
|
28 |
LU Y X, ZHAO C L, QI X G, et al. Pre⁃oxidation⁃tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108.
|
29 |
WANG H, LIU S T, LEI C, et al. P⁃doped hard carbon material for anode of sodium ion battery was prepared by using polyphosphoric acid modified petroleum asphalt as precursor[J]. Electrochimica Acta, 2024, 477: 143812.
|
30 |
LI Y M, HU Y S, QI X G, et al. Advanced sodium⁃ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191⁃197.
|
31 |
LI R, YANG B R, HU A J, et al. Heteroatom screening and microcrystal regulation of coal⁃derived hard carbon promises high⁃performance sodium⁃ion batteries[J]. Carbon, 2023, 215: 118489.
|
32 |
LI Y M, XU S Y, WU X Y, et al. Amorphous monodispersed hard carbon micro⁃spherules derived from biomass as a high performance negative electrode material for sodium⁃ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1): 71⁃77.
|
33 |
YU C X, LI Y, REN H X, et al. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium⁃ion batteries[J]. Carbon Energy, 2023, 5(1): e220.
|
34 |
YU C X, LI Y, WANG Z H, et al. Surface engineering based on in situ electro⁃polymerization to boost the initial coulombic efficiency of hard carbon anode for sodium⁃ion battery[J]. Rare Metals, 2022, 41(5): 1616⁃1625.
|
35 |
ADAMSON A, VÄLI R, PAALO M, et al. Peat⁃derived hard carbon electrodes with superior capacity for sodium⁃ion batteries[J]. RSC Advances, 2020, 10(34): 20145⁃20154.
|
36 |
LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork⁃derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852.
|
37 |
SAMPATH S, ROHINI V, CHINNASAMY K, et al. Solvothermal synthesis of magnetically separable Co–ZnO nanowires for visible light driven photocatalytic applications[J]. Physica B: Condensed Matter, 2023, 652: 414654.
|
38 |
MORISHITA T, TSUMURA T, TOYODA M, et al. A review of the control of pore structure in MgO⁃templated nanoporous carbons[J]. Carbon, 2010, 48(10): 2690⁃2707.
|
39 |
KYOTANI T, MA Z X, TOMITA A. Template synthesis of novel porous carbons using various types of zeolites[J]. Carbon, 2003, 41(7): 1451⁃1459.
|
40 |
张博, 郄佳鑫, 曹永安, 等. 基于可视化分析辅助探究钠离子电池硬碳负极研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 1⁃9.
|
|
ZHANG B, XI J X, CAO Y A, et al. Research progress of hard carbon anode of sodium⁃ion batteries based on visualization analysis[J]. Journal of Petrochemical Universities, 2022, 35(6): 1⁃9.
|
41 |
KAMIYAMA A, KUBOTA K, IGARASHI D, et al. MgO⁃template synthesis of extremely high capacity hard carbon for Na⁃ion battery[J]. Angewandte Chemie (International ed. in English), 2021, 60(10): 5114⁃5120.
|
42 |
LI T, LIU Z Q, GU Y J, et al. Hierarchically porous hard carbon with graphite nanocrystals for high⁃rate sodium ion batteries with improved initial coulombic efficiency[J]. Journal of Alloys and Compounds, 2020, 817: 152703.
|
43 |
ZHAO J H, HE X X, LAI W H, et al. Catalytic defect⁃repairing using manganese ions for hard carbon anode with high⁃capacity and high⁃initial⁃coulombic⁃efficiency in sodium⁃ion batteries[J]. Advanced Energy Materials, 2023, 13(18): 2300444.
|
44 |
ZHANG H M, ZHANG W F, HUANG F Q. Graphene inducing graphitization: Towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage[J]. Chemical Engineering Journal, 2022, 434: 134503.
|
45 |
HE X X, ZHAO J H, LAI W H, et al. Soft⁃carbon⁃coated, free⁃standing, low⁃defect, hard⁃carbon anode to achieve a 94% initial coulombic efficiency for sodium⁃ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44358⁃44368.
|
46 |
LI X W, SUN J Y, ZHAO W X, et al. Intergrowth of graphite⁃like crystals in hard carbon for highly reversible Na⁃ion storage[J]. Advanced Functional Materials, 2022, 32(2): 2106980.
|