1 |
高洁, 唐善法, 郭海莹, 等. 石油污染土壤处理新技术——植物型微生物燃料电池的适用性[J]. 油田化学, 2023, 40(2): 350⁃355.
|
|
GAO J, TANG S F, GUO H Y, et al. Applicability of new technology for treatment of oil contaminated soil——Plant⁃based microbial fuel cell[J]. Oilfield Chemistry, 2023, 40(2): 350⁃355.
|
2 |
何碧红, 谢伟雪, 陈臻, 等. 废旧动力锂电池正极材料回收技术研究进展[J]. 化工环保, 2024, 44(5): 601⁃608.
|
|
HE B H, XIE W X, CHEN Z, et al. Research progress on recycling technologies for cathode materials from spent lithium⁃ion batteries[J]. Environmental Protection of Chemical Industry, 2024, 44(5): 601⁃608.
|
3 |
SARITHA D, SANDEEP C H, SUJITHRA R, et al. Current advancement on anode materials for Na⁃ion batteries: Review[J]. Materials Today: Proceedings, 2022, 62(Part 6): 3022⁃3026.
|
4 |
田澍. 一维MoSe2@C钠离子电池负极材料的研究[J]. 当代化工, 2023, 52(4): 862⁃866.
|
|
TIAN S. Research on anode materials of one dimensional MoSe2@C sodium ion battery[J]. Contemporary Chemical Industry, 2023, 52(4): 862⁃866.
|
5 |
曲伟强, 赵佳辉, 王双, 等. 超级电容器用生物质基碳材料研究进展[J]. 低碳化学与化工, 2024, 49(10): 38⁃46.
|
|
QU W Q, ZHAO J H, WANG S, et al. Research progress of biomass⁃based carbon materials for supercapacitors[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2024, 49(10): 38⁃46.
|
6 |
白晓亮, 杨光, 周刚, 等. 川西北天井山古隆起固体沥青地球化学特征及其地质意义[J]. 东北石油大学学报, 2021, 45(5): 82⁃94.
|
|
BAI X L, YANG G, ZHOU G, et al. Geochemical characteristics and geological significance of solid bitumen in Tianjingshan paleo⁃uplift, northwest Sichuan[J]. Journal of Northeast Petroleum University, 2021, 45(5): 82⁃94.
|
7 |
杨贝, 喻韬, 江鹏, 等. 催化裂化油浆富芳烃组分热转化制备中间相沥青的研究[J]. 石油炼制与化工, 2023, 54(11): 22⁃28.
|
|
YANG B, YU T, JIANG P, et al. Preparation of mesophase pitch by thermal conversion of aromatics⁃rich components in FCC slurry[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 22⁃28.
|
8 |
XU R, SUN N, ZHOU H Y, et al. Hard carbon anodes derived from phenolic resin/sucrose cross⁃linking network for high⁃performance sodium⁃ion batteries[J]. Battery Energy, 2023, 2(2): 20220054.
|
9 |
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium⁃ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271⁃1273.
|
10 |
SUN N, GUAN Z R X, LIU Y W, et al. Extended "adsorption–insertion" model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351.
|
11 |
AU H, ALPTEKIN H, JENSEN A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2020, 13(10): 3469⁃3479.
|
12 |
STEVENS D A, DAHN J R. An in situ small⁃angle X⁃ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of the Electrochemical Society, 2000, 147(12): 4428⁃4431.
|
13 |
BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na⁃ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888⁃5892.
|
14 |
XIAO L F, LU H Y, FANG Y J, et al. Low‐defect and low‐porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials, 2018, 8(20): 1703238.
|
15 |
CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783⁃3787.
|
16 |
BAI P X, HE Y W, ZOU X X, et al. Elucidation of the sodium⁃storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217.
|
17 |
CHEN X Y, TIAN J Y, LI P, et al. An overall understanding of sodium storage behaviors in hard carbons by an "adsorption‐intercalation/filling" hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): 2200886.
|
18 |
YU X, XIN L, LI X W, et al. Completely crystalline carbon containing graphite⁃like crystal enables 99.5% initial coulombic efficiency for Na⁃ion batteries[J]. Materials Today, 2022, 59: 25⁃35.
|
19 |
WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium⁃ion batteries[J]. Nature Communications, 2014, 5: 4033.
|
20 |
LIN X Y, LIU Y Z, TAN H, et al. Advanced lignin⁃derived hard carbon for Na⁃ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316⁃323.
|
21 |
HOU B H, WANG Y Y, NING Q L, et al. Self⁃supporting, flexible, additive⁃free, and scalable hard carbon paper self⁃interwoven by 1D microbelts: Superb room/low⁃temperature sodium storage and working mechanism[J]. Advanced Materials, 2019, 31(40): e1903125.
|
22 |
YAMAMOTO H, MURATSUBAKI S, KUBOTA K, et al. Synthesizing higher⁃capacity hard⁃carbons from cellulose for Na⁃and K⁃ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 16844⁃16848.
|
23 |
LU Y X, ZHAO C L, QI X G, et al. Pre⁃oxidation⁃tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108.
|
24 |
QI Y R, LU Y X, LIU L L, et al. Retarding graphitization of soft carbon precursor: From fusion⁃state to solid⁃state carbonization[J]. Energy Storage Materials, 2020, 26: 577⁃584.
|
25 |
LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork⁃derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852.
|
26 |
MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608⁃2612.
|
27 |
KAMIYAMA A, KUBOTA K, NAKANO T, et al. High⁃capacity hard carbon synthesized from macroporous phenolic resin for sodium⁃ion and potassium⁃ion battery[J]. ACS Applied Energy Materials, 2020, 3(1): 135⁃140.
|
28 |
REN Q J, SHI Z Q, YAN L, et al. High⁃performance sodium⁃ion storage: Multi⁃channel carbon nanofiber freestanding anode contrived via ingenious solvent⁃induced phase separation[J]. Journal of Materials Chemistry A, 2020, 8(38): 19898⁃19907.
|
29 |
ZHENG Z, HU S J, YIN W J, et al. CO2⁃etching creates abundant closed pores in hard carbon for high⁃plateau⁃capacity sodium storage[J]. Advanced Energy Materials, 2024, 14(3): 2303064.
|
30 |
LI Q, ZHU Y Y, ZHAO P Y, et al. Commercial activated carbon as a novel precursor of the amorphous carbon for high⁃performance sodium⁃ion batteries anode[J]. Carbon, 2018, 129: 85⁃94.
|
31 |
TIAN Y R, YI Z L, SU F Y, et al. Regulating the pore structure of activated carbon by pitch for high⁃performance sodium⁃ion storage[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17553⁃17562.
|
32 |
CHEN X Y, SAWUT N, CHEN K, et al. Filling carbon: A microstructure⁃engineered hard carbon for efficient alkali metal ion storage[J]. Energy & Environmental Science, 2023, 16(9): 4041⁃4053.
|
33 |
YIN X P, LU Z X, WANG J, et al. Enabling fast Na+ transfer kinetics in the whole⁃voltage⁃region of hard⁃carbon anodes for ultrahigh⁃rate sodium storage[J]. Advanced Materials, 2022, 34(13): 2109282.
|
34 |
LI Q, LIU X S, TAO Y, et al. Sieving carbons promise practical anodes with extensible low⁃potential plateaus for sodium batteries[J]. Natl Sci Rev, 2022, 9(8): nwac084.
|
35 |
LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9(2): 134⁃142.
|
36 |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9⁃10): 1051⁃1069.
|
37 |
BEDA A, VAULOT C, MATEI GHIMBEU C, et al. Hard carbon porosity revealed by the adsorption of multiple gas probe molecules (N2, Ar, CO2, O2 and H2)[J]. Journal of Materials Chemistry A, 2021, 9(2): 937⁃943.
|
38 |
SAUREL D, SEGALINI J, JAUREGUI M, et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage[J]. Energy Storage Materials, 2019, 21: 162⁃173.
|
39 |
STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803⁃A811.
|
40 |
XIE F, XU Z, GUO Z Y, et al. Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose[J]. Carbon Energy, 2022, 4(5): 914⁃923
|
41 |
KITSU IGLESIAS L, ANTONIO E N, MARTINEZ T D, et al. Revealing the sodium storage mechanisms in hard carbon pores[J]. Advanced Energy Materials, 2023, 13(44): 2302171.
|
42 |
SIMONE V, BOULINEAU A, DE GEYER A, et al. Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure[J]. Journal of Energy Chemistry, 2016, 25(5): 761⁃768.
|
43 |
NAVARRO⁃SUÁREZ A M, SAUREL D, SÁNCHEZ⁃FONTECOBA P, et al. Temperature effect on the synthesis of lignin⁃derived carbons for electrochemical energy storage applications[J]. Journal of Power Sources, 2018, 397: 296⁃306.
|
44 |
TANG Z, ZHANG R, WANG H Y, et al. Revealing the closed pore formation of waste wood⁃derived hard carbon for advanced sodium⁃ion battery[J]. Nature Communications, 2023, 14(1): 6024.
|
45 |
SONG M X, YI Z L, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low⁃temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620⁃629.
|