1 |
Hamidouche S, Bouras O, Zermane F, et al. Simultaneous sorption of 4⁃nitrophenol and 2⁃nitrophenol on a hybrid geocomposite based on surfactant⁃modified pillared⁃clay and activated carbon[J]. Chemical Engineering Journal, 2015, 279(12):964⁃972.
|
2 |
Abazari R, Mahjoub A R, Salehi G. Preparation of amine functionalized g⁃C3N4@H/SMOF NCs with visible light photocatalytic characteristic for 4⁃nitrophenol degradation from aqueous solution[J]. Journal of Hazardous Materials, 2019, 365(3):921⁃931.
|
3 |
Madadi S, Biriaei R, Sohrabi M, et al. Photodegradation of 4⁃nitrophenol using an impinging streams photoreactor coupled with a membrane[J]. Chemical Engineering & Processing Process Intensification, 2016, 99(4):1⁃9.
|
4 |
Zhang K F, Liu Y X, Deng J G, et al. Fe2O3/3DOM BiVO4: High⁃performance photocatalysts for the visible light⁃driven degradation of 4⁃nitrophenol[J]. Applied Catalysis B: Environmental, 2017, 202(3):569⁃579.
|
5 |
Muersha W, Selda P S G. Effects of metal oxide semiconductors on the photocatalytic degradation of 4⁃nitrophenol[J]. Journal of Molecular Structure, 2018, 7(34):96⁃102.
|
6 |
Li X Q, Wang J D, Li M J, et al. Fe⁃doped TiO2/SiO2 nanofibrous membranes with surface molecular imprinted modification for selective photodegradation of 4⁃nitrophenol[J]. Chinese Chemical Letters, 2018, 29(3):201⁃204.
|
7 |
杨芬, 甘复兴. 掺锑二氧化锡纳米涂层电极制备及电催化氧化性能[J]. 化工新型材料, 2012, 40(12):52⁃55.
|
8 |
赵利军, 程海洋, 王承学, 等. 硝基苯催化加氢合成对氨基苯酚的绿色清洁工艺[J]. 应用化学, 2015,32(9):977⁃986.
|
9 |
Locatelli P, Gurtat M, Lenz G F, et al. Simple borophosphate glasses for on⁃demand growth of self⁃supported copper nanoparticles in the reduction of 4⁃nitrophenol[J]. Journal of Hazardous Materials, 2021, 416(37):125801⁃125811.
|
10 |
Su B Q, Feng Y X, Xian L, et al. The synthesis of Pt⁃CNTs nanocatalyst promoted by visible light and catalytic reduction of 4⁃nitrophenol[J]. Journal of Nano Research, 2021, 68(12):81⁃90.
|
11 |
Veerakumar P, Madhu R, Chen S M, et al. Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications[J]. Journal of Materials Chemistry A, 2014, 2(28):16015⁃16022.
|
12 |
Zheng G C, Polavarapu L, Liz⁃Marzán L M, et al. Gold nanoparticle⁃loaded filter paper: A recyclable dip⁃catalyst for real⁃time reaction monitoring by surface enhanced Raman scattering[J]. Chemical Communications, 2015, 51(22):4572⁃4575.
|
13 |
Shi Y, Zhang X L, Zhu Y M, et al. Core⁃shell structured nanocomposites Ag@CeO2 as catalysts for hydroge nation of 4⁃nitrophenol and 2⁃nitroaniline[J]. RSC Advances, 2016, 6(53):47966⁃47973.
|
14 |
Koroleva M Y, Kovalenko D A, Shkinev V M, et al. Synthesis of copper nanoparticles stabilized by polyoxyethy lenesorbitan monooleate[J]. Russian Journal of Inorganic Chemistry, 2011, 56(1):6⁃10.
|
15 |
Bi F K, Zhang X D, Chen J F, et al. Excellent catalytic activity and water resistance of UiO⁃66⁃supported highly dispersed Pd nanoparticles for toluene catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 269(38):118767.
|
16 |
Zhang X D, Liang S, Bi F K, et al. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO⁃66 derivative[J]. Journal of Colloid and Interface Science, 2020, 571(4):38⁃47.
|
17 |
Batten S R, Champness N R, Chen X D, et al. Terminology of metal⁃organic frameworks and coordination polymers (IUPAC Recommendations 2013)[J]. Pure & Applied Chemistry, 2013,85(8):1715⁃1724.
|
18 |
Nugent P, Belmabkhout Y, Burd S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439):80⁃84.
|
19 |
Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal⁃organic frameworks[J]. Chemical Reviews, 2012, 112(2):724⁃781.
|
20 |
Herm Z R, Krishna R, Long J R. CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)[J]. Microporous and Mesoporous Materials, 2012, 151(4):481⁃487.
|
21 |
Millward A R, Yaghi O M. Metal⁃organic frameworks with exceptionally high capacity for storage of carbon dioxide at room⁃temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998⁃17999.
|
22 |
Bonneau M, Lavenn C, Ginet P, et al. Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas storage and separation[J]. Green Chemistry, 2020, 22(3):718⁃724.
|
23 |
Li H, Li L B, Lin R B, et al. Porous metal⁃organic frameworks for gas storage and separation: Status and challenges[J]. EnergyChem, 2019, 1(1):100006.
|
24 |
Li W L, Ji Q, Zhao T, et al. Boosting high⁃rate Li⁃S batteries by an MOF⁃derived catalytic electrode with a layer⁃by⁃layer structure[J]. Advanced Science, 2019, 6(16):1⁃9.
|
25 |
So M C, Wiederrecht G P, Mondloch J E, et al. Metal⁃organic framework materials for light⁃harvesting and energy transfer[J]. Chemical Communications, 2015, 51(17):3501⁃3510.
|
26 |
Wang J L, Wang C, Lin W B. Metal⁃organic frameworks for light harvesting and photocatalysis[J]. ACS Catalysis, 2012, 2(12):2630⁃2640.
|
27 |
Naghian E, Einaz M, Sohouli E, et al. A new electrochemical sensor for determination of fentanyl lethal drug by screen⁃printed carbon electrode modified with open⁃ended channels of Zn(Ⅱ)⁃MOF[J]. New Journal of Chemistry, 2020, 44(1):9271⁃9277.
|
28 |
Naghian E, Shahdost⁃Fard F, Sohouli E, et al. Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal⁃organic framework[J]. Microchemical Journal, 2020, 156(12):104888⁃104816.
|
29 |
Sohouli E, Karimi M S, Einaz M, et al. Fabrication of an electrochemical mesalazine sensor based on ZIF⁃67[J]. Measurement, 2020, 165(34):1⁃32.
|
30 |
Horcajada P, Serre C, Vallet⁃Regí M, et al. Metal⁃organic frameworks as efficient materials for drug delivery[J]. Angewandte Chemie International Edition, 2006, 118(36):6120⁃6124.
|
31 |
Kim M, Cohen S M. Discovery, development, and functionalization of Zr(Ⅳ)⁃based metal⁃organic frameworks[J]. CrystEngComm, 2012, 14(12):4096⁃4104.
|
32 |
Li L C, Xu Y L, Zhong D J, et al. CTAB⁃surface⁃functionalized magnetic MOF@MOF composite adsorbent for Cr(Ⅵ) efficient removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124255.
|
33 |
Guan Q Q, Wang B, Chai X S, et al. Comparison of Pd⁃UiO⁃66 and Pd⁃UiO⁃66⁃NH2 catalysts performance for phenol hydrogenation in aqueous medium[J]. Fuel, 2017, 205(4):130⁃141.
|
34 |
Cai X X, Pan J P, Tu G M, et al. Pd/UiO⁃66(Hf): A highly efficient heterogeneous catalyst for the hydrogenation of 2,3,5⁃trimethylbenzoquinone[J]. Catalysis Communications, 2018, 113(2):23⁃26.
|
35 |
Wunder S, Polzer F, Lu Y, et al. Kinetic analysis of catalytic reduction of 4⁃nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes[J]. Journal of Physical Chemistry C, 2010, 114(19):8814⁃8820.
|