1 |
Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na⁃S batteries experimentally and theoretically[J]. Matter, 2020, 2(2): 323⁃344.
|
2 |
Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018⁃3032.
|
3 |
Hong X D, Mei J, Wen L, et al. Nonlithium metal⁃sulfur batteries: Steps toward a leap[J]. Advanced Materials, 2019, 31(5): e1802822.
|
4 |
Wang J H, Li S, Chen Y, et al. Phthalocyanine based metal⁃organic framework ultrathin nanosheet for efficient photocathode toward light⁃assisted Li⁃CO2 battery[J]. Advanced Functional Materials, 2022, 32(49): 2210259.
|
5 |
Li S, Wang J H, Dong L Z, et al. Three⁃in⁃one Fe⁃porphyrin based hybrid nanosheets for enhanced CO2 reduction and evolution kinetics in Li⁃CO2 battery[J]. Chinese Chemical Letters, 2023, 6(34): 107633.
|
6 |
Jiang C, Zhang Y, Zhang M, et al. Exfoliation of covalent organic frameworks into MnO2⁃loaded ultrathin nanosheets as efficient cathode catalysts for Li⁃CO2 batteries[J]. Cell Reports Physical Science, 2021, 2(4): 100392.
|
7 |
Wang J H, Zhang Y, Liu M, et al. Single⁃metal site⁃embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li⁃CO2 batteries[J]. Cell Reports Physical Science, 2021, 2(10): 100583.
|
8 |
Chung S H, Manthiram A. Current status and future prospects of metal⁃sulfur batteries[J]. Advanced Materials, 2019, 31(27): e1901125.
|
9 |
Yin Y X, Xin S, Guo Y G, et al. Lithium⁃sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186⁃13200.
|
10 |
Fang R, Zhao S, Sun Z, et al. More reliable lithium⁃sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48):1606823.
|
11 |
Ji X, Nazar L F. Advances in Li⁃S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821⁃9826.
|
12 |
Seh Z W, Sun Y, Zhang Q, et al. Designing high⁃energy lithium⁃sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605⁃5634.
|
13 |
Gao G K, Wang Y R, Wang S B, et al. Stepped channels integrated lithium⁃sulfur separator via photoinduced multidimensional fabrication of metal⁃organic frameworks[J]. Angewandte Chemie International Edition, 2021, 60(18): 10147⁃10154.
|
14 |
Gao G K, Wang Y R, Zhu H J, et al. Rapid production of metal⁃organic frameworks based separators in industrial⁃level efficiency[J]. Advanced Science, 2020, 7(24): 2002190.
|
15 |
Guo C, Liu M, Gao G K, et al. Anthraquinone covalent organic framework hollow tubes as binder microadditives in Li⁃S batteries[J]. Angewandte Chemie International Edition, 2022, 61(3): e202113315.
|
16 |
Yao X, Guo C, Song C, et al. In situ interweaved high sulfur loading Li⁃S cathode by catalytically active metalloporphyrin based organic polymer binders[J]. Advanced Materials, 2023, 35(7): 2208846.
|
17 |
Deng N, Kang W, Liu Y, et al. A review on separators for lithium⁃sulfur battery: Progress and prospects[J]. Journal of Power Sources, 2016, 331: 132⁃155.
|
18 |
Luo W, Cheng S, Wu M, et al. A review of advanced separators for rechargeable batteries[J]. Journal of Power Sources, 2021, 509: 230372.
|
19 |
Fan L, Li M, Li X, et al. Interlayer material selection for lithium⁃sulfur batteries[J]. Joule, 2019, 3(2): 361⁃386.
|
20 |
Zhang S S. A review on the separators of liquid electrolyte Li⁃ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351⁃364.
|
21 |
Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium⁃ion batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857⁃3886.
|
22 |
Agostini M, Hassoun J. A lithium⁃ion sulfur battery using a polymer, polysulfide⁃added membrane[J]. Scientific Reports, 2015, 5(1): 7591.
|
23 |
Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589.
|
24 |
Costa C M, Silva M M, Lanceros⁃Méndez S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. RSC Advances, 2013, 3(29): 11404⁃11417.
|
25 |
Djian D, Alloin F, Martinet S, et al. Macroporous poly(vinylidene fluoride) membrane as a separator for lithium⁃ion batteries with high charge rate capacity[J]. Journal of Power Sources, 2009, 187(2): 575⁃580.
|
26 |
Jung B. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration[J]. Journal of Membrane Science, 2004, 229(1): 129⁃136.
|
27 |
Croce F, Fiory F S, Persi L, et al. A high⁃rate, long⁃life, lithium nanocomposite polymer electrolyte battery[J]. Electrochemical and Solid⁃State Letters, 2001, 4(8): A121⁃A123.
|
28 |
Liang Y, Cheng S, Zhao J, et al. Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium⁃ion batteries[J]. Journal of Power Sources, 2013, 240: 204⁃211.
|
29 |
Hashimoto A, Yagi K, Mantoku H, Porous film of high molecular weight polyolefin and process for producing same: US6048607A[P]. 2000⁃04⁃11.
|
30 |
Nagou S, Nakamura S. Microporous film and process for production thereof: US4791144A[P].1988⁃12⁃13.
|
31 |
Yu T. Trilayer battery separator: US6080507A[P].2000⁃06⁃27.
|
32 |
He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a celgard separator as a multifunctional polysulfide barrier for high⁃performance Li⁃S batteries[J]. Energy & Environmental Science, 2018, 11(9): 2560⁃2568.
|
33 |
Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long⁃life lithium⁃sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817.
|
34 |
Ren W, Ma W, Zhang S, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 23: 707⁃732.
|
35 |
Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548⁃568.
|
36 |
Chang J N, Li Q, Shi J W, et al. Oxidation⁃reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2[J]. Angewandte Chemie International Edition, 2023, 62(9): e202218868.
|
37 |
Chang J N, Li Q, Yan Y, et al. Covalent⁃bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo⁃oxidation biomass valorization[J]. Angewandte Chemie International Edition, 2022, 61(37): e202209289.
|
38 |
Wang Y R, Ding H M, Ma X Y, et al. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin⁃based covalent organic framework[J]. Angewandte Chemie International Edition, 2022, 61(5): e202114648.
|
39 |
Wang Y R, Ding H M, Sun S N, et al. Light, heat and electricity integrated energy conversion system: Photothermal⁃assisted Co⁃electrolysis of CO2 and methanol[J]. Angewandte Chemie International Edition, 2022, 61(50): e202212162.
|
40 |
Wang Z, Zhang S, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708⁃735.
|
41 |
Liu X, Huang D, Lai C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material[J]. Chemical Society Reviews, 2019, 48(20): 5266⁃5302.
|
42 |
Scicluna M C, Vella⁃Zarb L. Evolution of nanocarrier drug⁃delivery systems and recent advancements in covalent organic framework⁃drug systems[J]. ACS Applied Nano Materials, 2020, 3(4): 3097⁃3115.
|
43 |
Geng K, He T, Liu R, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814⁃8933.
|
44 |
Guo C, Zhou J, Chen Y, et al. Integrated micro space electrostatic field in aqueous Zn⁃ion battery: Scalable electrospray fabrication of porous crystalline anode coating[J]. Angewandte Chemie International Edition, 2023, 62(11): e202300125.
|
45 |
Guo C, Zhou J, Chen Y, et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal⁃covalent organic frameworks for dendrite⁃free Zn⁃based aqueous batteries[J]. Angewandte Chemie International Edition, 2022, 61(41): e202210871.
|
46 |
Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166⁃11670.
|
47 |
An Y K, Tan S S, Liu Y, et al. Designs and applications of multi⁃functional covalent organic frameworks in rechargeable batteries[J]. Energy Storage Materials, 2021, 41: 354⁃379.
|
48 |
Yoo J T, Cho S J, Jung G Y, et al. COF⁃net on CNT⁃net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium⁃sulfur batteries[J]. Nano Letters, 2016, 16(5): 3292⁃3300.
|
49 |
Xu Q, Zhang K, Qian J, et al. Boosting lithium⁃sulfur battery performance by integrating a redox⁃active covalent organic framework in the separator[J]. ACS Applied Energy Materials, 2019, 2(8): 5793⁃5798.
|
50 |
Xu J, An S, Song X, et al. Towards high performance Li⁃S batteries via sulfonate⁃rich COF⁃modified separator[J]. Advanced Materials, 2021, 33(49): 2105178.
|
51 |
Shi J, Su M, Li H, et al. Two⁃dimensional imide⁃based covalent organic frameworks with tailored pore functionality as separators for high⁃performance Li⁃S batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42018⁃42029.
|
52 |
Zhao J, Yan G, Zhang X, et al. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high⁃performance Li⁃S batteries[J]. Chemical Engineering Journal, 2022, 442: 136352.
|
53 |
Sun K, Wang C, Dong Y, et al. Ion⁃selective covalent organic framework membranes as a catalytic polysulfide trap to arrest the redox shuttle effect in lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4079⁃4090.
|
54 |
Zhang Y, Guo C, Zhou J, et al. Anisotropically hybridized porous crystalline Li⁃S battery separators[J]. Small, 2023, 19(5): e2206616.
|
55 |
Wang Y, Yang X, Li P, et al. Covalent organic frameworks for separator modification of lithium⁃sulfur batteries[J]. Macromolecular Rapid Communications, 2023,44: 2200760.
|
56 |
Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li⁃S batteries[J]. Advanced Energy Materials, 2015, 5: 1500408.
|
57 |
Wang J, Si L, Wei Q, et al. Covalent organic frameworks as the coating layer of ceramic separator for high⁃efficiency lithium⁃sulfur batteries[J]. ACS Applied Nano Materials, 2017, 1(1): 132⁃138.
|
58 |
Shi Q X, Pei H J, You N, et al. Large⁃scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li⁃S batteries[J]. Chemical Engineering Journal, 2019, 375(1): 125977.
|
59 |
Hu B, Ding B, Xu C, et al. Fabrication of a covalent triazine framework functional interlayer for high⁃performance lithium⁃sulfur batteries[J]. Nanomaterials, 2022, 12(2): 255.
|
60 |
Wang R, Cai Q, Zhu Y, et al. An n⁃type benzobisthiadiazole⁃based covalent organic framework with narrowed bandgap and enhanced electroactivity[J]. Chemistry of Materials, 2021, 33(10): 3566⁃3574.
|
61 |
Cao Y, Wu H, Li G, et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium⁃sulfur batteries[J]. Nano Letters, 2021, 21(7): 2997⁃3006.
|
62 |
Deng X, Li Y, Li L, et al. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium⁃sulfur batteries[J]. Nanotechnology, 2021, 32(27): 275708.
|
63 |
Zhang K, Li X, Ma L, et al. Fluorinated covalent organic framework⁃based nanofluidic interface for robust lithium⁃sulfur batteries[J]. ACS Nano, 2023, 17: 2901⁃2911.
|
64 |
Zhu Y, Yang J, Qiu X, et al. Amphiphilic carborane⁃based covalent organic frameworks as efficient polysulfide nano⁃trappers for lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60373⁃60383.
|
65 |
Wang J, Qin W, Zhu X, et al. Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium⁃sulfur batteries[J]. Energy, 2020, 199: 117372.
|
66 |
Xu J, Tang W, Yang C, et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li⁃S chemistry[J]. ACS Energy Letters, 2021, 6(9): 3053⁃3062.
|
67 |
Yan W, Gao X, Yang J L, et al. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion⁃selective COFs composite nanowire for Li⁃S batteries[J]. Small, 2022, 18(11): 2106679.
|
68 |
Li M, Yan G, Zou P, et al. Dynamic disulfide bonds contained covalent organic framework modified separator as efficient inhibit polysulfide shuttling in Li⁃S batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(41): 13638⁃13649.
|
69 |
Jiang C, Tang M, Zhu S, et al. Constructing universal ionic sieves via alignment of two⁃dimensional covalent organic frameworks (COFs)[J]. Angewandte Chemie International Edition, 2018, 57(49): 16072⁃16076.
|
70 |
Cao Y, Liu C, Wang M, et al. Lithiation of covalent organic framework nanosheets facilitating lithium⁃ion transport in lithium⁃sulfur batteries[J]. Energy Storage Materials, 2020, 29: 207⁃215.
|
71 |
Li P, Lv H, Li Z, et al. The electrostatic attraction and catalytic effect enabled by ionic⁃covalent organic nanosheets on mxene for separator modification of lithium⁃sulfur batteries[J]. Advanced Materials, 2021, 33(17): 2007803.
|
72 |
Han L, Sun S, Yang Y, et al. An ultrathin double⁃layer covalent organic framework/zwitterionic microporous polymer functional separator for high⁃performance lithium⁃sulfur battery[J]. Applied Surface Science, 2023, 610: 155496.
|
73 |
Li G H, Yang Y, Cai J C, et al. Lithiophilic aromatic sites and porosity of COFs for a stable lithium metal anode[J]. ACS Applied Energy Materials, 2022, 5(11): 13554⁃13561.
|
74 |
Li Z, Ji W, Wang T X, et al. Guiding uniformly distributed Li⁃ion flux by lithiophilic covalent organic framework interlayers for high⁃performance lithium metal anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22586⁃22596.
|