随着工业化和现代化的发展,水污染日渐严重,利用太阳光进行水污染降解已经成为未来发展的趋势。在不使用任何模板的情况下,通过溶液法在室温下制备了花瓣状碘氧化铋(BiOI)光催化剂,并通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外可见光漫反射光谱(UV?Vis DRS)对其进行了表征;通过活性物种捕获实验和电子自旋共振(ESR)分析,推测了花瓣状BiOI光催化降解有机污染物的可能机理。结果表明,与TiO2相比,花瓣状BiOI在降解罗丹明B(RhB)方面表现出更好的可见光光催化活性;·O 2 - 是花瓣状BiOI光催化降解有机污染物过程中的主要活性物种。研究为制备高活性光催化剂提供了一种简易、便捷的合成方法。
针对乙醇催化脱氢制备乙醛的反应,现有催化剂存在选择性受限的问题,特别是在高效生成乙醛方面表现不佳,部分催化剂因酸度过高而阻碍脱氢过程。因此,开发具有表面碱性的新型高性能催化剂至关重要。通过共沉淀法与溶液燃烧法分别制备了La2O2CO3/ZnO?a和La2O2CO3/ZnO?b两种复合催化剂,通过改变沉淀pH、老化时间、煅烧温度、煅烧时间等条件对催化剂性能进行评价,确定了催化剂的最佳制备条件;利用扫描电镜、透射电镜、X射线衍射、CO2程序升温脱附等手段,深入探究了催化剂的晶相、形貌、表面碱性及其与催化性能的关系;在最佳催化剂上考察了乙醇脱氢反应合成乙醛的最佳工艺条件。结果表明,共沉淀法的最佳制备条件:沉淀pH为9.0,老化时间为12.0 h,nLa/nZn=1.0,煅烧温度为600 ℃;溶液煅烧法的最佳制备条件:煅烧时间为5.0 h,煅烧温度为550 ℃,nLa/nZn=1.0;当体积空速为1.0 h-1、反应压力为1.0 MPa、反应温度为190 ℃时,La2O2CO3/ZnO?a上乙醛的收率最高,为57.60%。
针对耐温聚乙烯管道在油田集输系统应用中缺乏专用热力水力计算模型的现状,通过现场实验对其集输油过程中的水力摩阻特性与热力温降规律进行了量化分析。基于多参数变量实验数据,系统研究了流体物性、含水率、输送温度、流量等关键参数对管道压降及温降的影响机制,首次建立了适用于耐温聚乙烯材质的管壁总传热系数计算体系;利用PIPEPHASE软件构建仿真模型库,通过对比不同边界条件下理论预测数据与实测数据的偏差,筛选并修正了适用于该材质的摩阻计算模型与热传导模型,为耐温聚乙烯管道的工艺设计与安全评估提供了具有工程应用价值的理论支撑。
在SAGD(蒸汽辅助重力驱油技术)热采重油的过程中,主要采用常规热采锅炉生热。以蒸汽作为携热介质时常面临见水时间快、热利用率低等问题,导致采收率低。通过改变生热方式,在保障热量注入的前提下减少水量注入,对热采具有重要意义。基于定向化学反应产物分析,结合三维尺度大型物理模拟实验,验证了定向化学反应的可行性,明确了定向化学反应辅助SAGD的温度场的扩展规律,分析评价了不同开采阶段的生产曲线特征。结果表明,在定向化学反应的生成物中,液态流体主要为C5-C20,气态物质以CH4和CO2为主;利用定向化学反应产物辅助SAGD开发,最终采出程度为76.59%,比单纯SAGD提高了19.99个百分点。研究进一步验证了定向化学反应辅助SAGD增效技术的作用机理,为现场应用提供了理论依据和技术支撑。
多数油气生产问题源于不正确的油气相行为模拟,微?纳米孔中油气相行为对页岩油气开发至关重要。因此,准确模拟微?纳米孔中的油气相行为,是页岩油气高效开发的关键。考虑毛细管压力和流体临界点偏移对微?纳米孔中热力学相平衡的影响,耦合体积平移的Peng?Robinson状态方程(PR?EOS),构建了一个微?纳米孔限域下的气液平衡(VLE)模型,其预测相对误差小于1.53%;基于改进的VLE模型,研究了限域下微?纳米孔效应对Bakken页岩油相行为的影响规律。结果表明,微?纳米孔限域效应降低了气?液相密度差和轻质组分平衡常数K,并且缩小了相包络面积;随着孔隙半径减小,气液界面张力(IFT)先缓慢降低,然后快速降低,其中孔隙半径20 nm为下降速率转折点。该研究可为非常规油气资源的开发提供重要的理论基础支持。
为了快速界定掺氢天然气高压管道泄漏的危险距离,通过整合管道小孔泄漏模型、名义喷管模型和横流?射流积分模型,建立了开放空间掺氢天然气高压管道小孔喷射泄漏过程完整的理论数学模型,并通过实验验证了高速射流下横流?射流积分模型的适用性;基于建立的模型,分析了掺氢比(氢气的体积分数)、风速、泄漏孔直径、管内压力对射流轨迹的影响以及掺氢比、风速、名义直径对最大爆炸危险距离的影响规律。结果表明,横流?射流积分模型数据与实验数据和数值模拟数据吻合较好;掺氢比、泄漏孔直径和管道压力越大,泄漏射流轨迹偏折程度越小;风速越大,泄漏射流偏折程度越大;当掺氢比低于44.4%时,掺氢比与最大爆炸危险距离呈线性减小关系;当掺氢比高于44.4%时,掺氢比与最大爆炸危险距离呈线性增加关系;风速与最大爆炸危险距离近似呈线性减小关系;名义直径与最大爆炸危险距离呈正比关系。
CO2捕集、利用与封存(CCUS)是目前降低CO2排放、缓解温室效应的重要措施。吸收法作为当前大规模商业化CO?捕集的主流技术,其高能耗问题严重制约了CCUS技术的推广与发展。聚焦CCUS过程中的节能路径,系统评述了新型吸收剂的研发、新型高效反应器的设计、CO2捕集转化一体化技术三个关键方向的最新研究进展与成果。结果表明,新型吸收剂可降低吸收反应过程的能耗;新型高效反应器可大幅强化传质;CO2捕集转化一体化技术则从工艺源头实现节能降耗。未来研究需着力于新型吸收剂的工业化应用验证、反应器长期运行的稳定性与成本控制、吸收转化一体化技术经济性的进一步提升,以推动低能耗CCUS技术的规模化应用,助力“双碳”目标的实现。
针对炼厂气体三塔分馏工艺中脱丙烷塔蒸汽消耗量较大的问题,提出使用高低压双塔脱丙烷工艺代替原流程中的单塔脱丙烷工艺。利用Unisim Design流程模拟软件对该工艺进行稳态模拟,分析了高压脱丙烷塔的蒸汽热负荷变化与脱乙烷塔的热水热负荷变化,并优化了主要操作参数。结果表明,在高压脱丙烷塔的n(塔顶C3采出量)/n(进料C3总量)=0.6、塔顶压力为1.81 MPa、进料位置为第10块塔板,且脱乙烷塔塔底与低压脱丙烷塔塔顶进入丙烯精馏塔的进料位置分别为第114、126块塔板的操作条件下,与原流程相比,使用高低压双塔脱丙烷工艺可以节约56.12%的蒸汽热负荷,脱乙烷塔比优化前节约了49.83%的热水热负荷,总耗能减少了235.4 kW,每小时可节省热公用工程费用约339.71元。
在溶剂热条件下,以Cu(CF3COO)2·xH2O为可溶性铜盐、噻吩?2,5?二羧酸(H2tdc)为线性配体,分别与1,10?菲罗啉(phen)和2,2′?联吡啶(bipy)反应,合成了一维链状化合物[Cu(tdc)(phen)] n (1)和[Cu(tdc)(bipy)] n ·DMF(2);通过单晶X?射线衍射技术(SC?XRD)对化合物的结构进行了表征;通过多晶X?射线衍射和傅里叶红外光谱对化合物进行了组成分析;通过光电流响应测试和溶液稳定性测试对化合物的性能进行了研究。结果表明,化合物1和2的不对称结构单元极其相似,都含有相同的[Cu(tdc)]结构单元;化合物1和2都具有光化学稳定性;在不同的表面修饰配体phen和bipy的作用下,化合物1和2表现出不同的光电流响应值。
针对加氢反应流出物空冷器(REAC)系统的腐蚀失效问题,采用逆序倒推法构建典型工艺仿真模型,研究了油品种类及其流量对系统内腐蚀性组分分布、铵盐结晶温度、冲蚀风险等的影响机制。结果表明,油品流量的变化不改变腐蚀性组分的水相分布,不会增加系统冲蚀风险;油品流量对铵盐结晶温度的影响不明显,增大油品流量不会增加系统结盐风险;当蜡油流量增大时,腐蚀因子K显著减小,使系统的腐蚀风险降低;蜡油流量对空冷器出口水相的NH4HS质量分数影响较大,NH4HS质量分数在高温区随着石脑油流量的增大而减小,而在低温区随着石脑油流量的增大而增大;当柴油、石脑油流量增大时,出口水相的pH升高,而蜡油流量增大时出口水相的pH降低。建议加工处理原油时适当增大蜡油流量,同时增大柴油流量或注水量,以降低系统的腐蚀失效风险。
在水电解过程中,“气泡效应”会显著降低系统的整体性能;经典成核理论(CNT模型)难以揭示实际电化学体系中双电层(EDL)、表面微结构和传质协同作用对成核动力学的调控机制。研究综合考虑离子迁移?扩散行为、电极表面纳微结构及浓度边界层对成核过程的协同调控机制,构建了双电层?传质?表面微结构协同作用的电极界面气泡成核模型。结果表明,EDL与微孔结构的协同作用会在表面微孔处产生显著的电位梯度,导致局部过饱和度升高,优先诱发气泡成核;在高过电位下,浓度边界层与成核能垒呈非线性关系,浓度边界层越薄,高电位的成核速率降低趋势越显著;气泡生长过程受三相接触线(TPCL)附近的净浓度通量控制,并呈现两阶段生长特征。研究结果为优化析气电极表面设计提供了理论依据。
氢气作为清洁能源的载体,其高效制备依赖于电解水析氢反应(HER)催化剂的性能优化。铂(Pt)基催化剂具有优异的HER活性,但成本高、稳定性不足,而这些问题可以通过载体材料设计解决。氢氧化镍(Ni(OH)2)凭借其独特的质子传导能力、界面调控特性及其对Pt的稳定作用,成为极具潜力的载体材料。然而,Ni(OH)2载体与Pt纳米颗粒的构效关系及其合成参数对催化性能的影响机制仍缺乏系统性研究。聚焦水热合成温度对Ni(OH)2载体晶相演变及Pt界面生长行为的调控规律,通过分析合成参数?微观结构?催化性能的构效关系,揭示了温度对载体结晶度、Pt颗粒尺寸分布及界面电子结构的协同作用。结果表明,100 ℃下合成的Pt@Ni(OH)2催化剂在1 mol/L的KOH电解液中表现出卓越的HER活性,在电流密度为10、100 mA/cm2时过电位分别为5、62 mV,塔菲尔(Tafel)斜率为70.0 mV/dec;经过50 h的连续运行,该电极的析氢性能几乎无衰减,显示出卓越的稳定性。
磷酸钒钠(Na3V2(PO4)3,简称NVP)由于其较强的热稳定性和宽阔的钠离子传输通道,在钠离子电池的应用中具有独特优势。然而,价格昂贵的钒原料减弱了NVP在商业化发展中的关注度。以提钒工业上游产物NaVO3为钒源,利用固相法成功合成了NVP,并将其与以V2O5和NH4VO3为钒源、在不同煅烧温度下合成的NVP进行对比。结果表明,钒源对NVP的结构和形貌具有重要影响,并进一步影响电池的比容量和倍率性能;以NaVO3为钒源、在750 ℃合成的NVP展现出优异的电化学性能,在0.1 C下获得了较高的初始比容量(105.6 mA·h/g),并且在1.0、2.0、5.0 C下仍能保持101.5、99.9、92.9 mA·h/g的高比容量;在1.0 C下循环300圈后,可逆比容量达97.1 mA·h/g,容量保持率高达94.6%,在5.0 C下循环500圈后容量保持率仍达94.0%。这种基于简单高效且使用廉价原料的合成策略对NVP的规模化生产具有借鉴意义。
镍铁(NiFe)基过渡金属催化剂因其优异的电催化性能,近年来在析氧反应(OER)中受到了广泛关注。然而,与贵金属Ru或Ir相比,NiFe基过渡金属催化剂的催化效率仍存在一定差距,因此对其改性十分必要。通过缺陷工程能够有效提升NiFe基过渡金属催化剂的OER催化活性。总结了NiFe基过渡金属催化剂的缺陷类型、表征方法,并概述了缺陷材料的构筑方法、缺陷型NiFe基过渡金属催化剂OER的研究进展;针对缺陷工程提升OER性能所面临的挑战进行了探讨,并对未来的发展提出了展望。
钠离子电池凭借其卓越的低温性能、显著的成本效益及高度的安全特性,在低速两轮电动车市场及大规模储能应用中正逐步成为锂离子电池的有力补充。商业化石墨负极在钠离子电池中并不兼容,取而代之的是性能表现优异的硬碳负极材料,但是其能耗大,成本高。在此背景下,研发兼具低成本、高可逆容量及卓越循环稳定性的钠离子电池负极材料成为行业亟需攻克的技术瓶颈。生物质因其可再生、低成本和环境友好的特点,成为制备硬碳材料的重要原料。生物质硬碳材料的储钠性能受碳化温度、前驱体种类及微观结构等多重因素的影响。从硬碳材料的储钠行为入手,介绍了针对储钠机制提出的相关模型;总结了硬碳负极的制备与电化学性能优化过程中热解、活化、掺杂等制备步骤的作用效果;分析了储钠机制对于解决当前硬碳负极所面临的原料选择受限、首次库仑效率低以及闭孔调控手段有限等问题的指导作用。
高镍三元正极材料LiNi x Co y Mn1-x-y O2(x≥0.6,NCM)由于其成本低廉、能量密度高、使用寿命长等优势,被认为是最具应用价值的锂离子电池正极材料之一。高镍虽然会显著提升NCM的比容量和能量密度,但也会导致其循环和热稳定性下降,因此其实际应用严重受限。对NCM进行掺杂改性是提升材料结构稳定性、改善其电化学性能的有效策略。详细介绍了NCM材料的掺杂方法;系统分析了多种掺杂元素对NCM容量、倍率性能、循环性能等的影响;对NCM的开发和未来所面临的挑战进行了展望,有望为NCM的应用提供参考。
钠离子电池的综合性能介于锂离子电池与铅酸电池之间,在电池能量密度要求适中且成本敏感的诸多领域具有潜在的应用价值。硬碳是钠离子电池当前最具前景的负极材料。大多数研究认为硬碳材料内部的孔隙是其主要的储钠位点之一,但目前硬碳负极中孔结构的表征技术较为有限,这阻碍了对硬碳孔结构的深入分析,对其设计性能提升策略也带来了较大困难。对当前硬碳孔结构的表征方法进行了综述,具体包括透射电镜、气体吸附、X射线小角散射、氦气真密度测试等方法。这些方法的综合使用有助于准确描述硬碳负极的孔结构,为设计高性能硬碳负极提供研究思路和技术支撑。
随着能源存储需求的日益增长,钠离子电池(SIBs)因其低成本和丰富的钠资源而受到广泛关注,尤其是作为负极材料的硬碳,因其优异的循环稳定性和较高的能量密度而成为研究热点。综述了硬碳负极材料在SIBs中的研究进展,包括硬碳前驱体的筛选与设计、表面修饰、孔道结构调节、碳化诱导和杂原子掺杂策略,以及其他提升硬碳性能的策略;通过深入分析硬碳的孔结构、表面官能团和微观结构对储钠机制的影响,探讨了不同制备工艺对硬碳性能的优化潜力;讨论了硬碳与电解液的界面反应机制,通过界面工程优化硬碳循环性能和倍率性能的可能路径;展望了硬碳技术的未来发展,包括纳米结构设计、表面改性和绿色制备工艺,强调了实现高性能、低成本和环境友好型SIBs的迫切需求。
丙烷脱氢反应在热力学上处于不利状态,因此需要通过优化工艺条件来实现动力学控制。利用单因素实验和多因素响应面法分析优化PtSnK/Al2O3催化剂上丙烷脱氢工艺条件,并进行了实验验证。通过单因素实验为响应面法筛选出考察因素取值范围;采用反应温度、体积空速、氢烃比(氢气与丙烷的物质的量比)3个因素的Box?Behnken设计,以丙烯选择性为响应值,对丙烷脱氢反应条件进行了多因素响应面法分析优化;对优化后的工艺条件进行了实验验证。结果表明,优化的反应温度为605 ℃,体积空速为2 200 h-1,氢烃比为0.6,该工艺条件下丙烯选择性的理论预测值为93.01%;各因素影响的权重从大到小的顺序为反应温度>氢烃比>体积空速;优化后丙烯选择性的实验测定值为93.00%,丙烷转化率为32.00%,丙烯选择性的实验测定值与通过多因素响应面法预测的结果一致,说明模型可靠、可信。
茚并哒嗪衍生物因具有良好的生物活性,在农药和医药等领域具有广泛的应用前景,因此开发一种快速高效的合成方法越来越受到研究者的关注。设计了一种酸催化的烯丙基苯与四嗪官能化环化反应,对反应中间体进行捕获并使用核磁共振波谱仪对中间体以及产物进行了结构表征。结果表明,该反应经历分子间[4+2]环加成和分子内傅克烷基化反应等历程,实现了一步合成茚并哒嗪衍生物;反应还具有广阔的底物范围和良好的官能团相容性,能够以67%~95%的产率得到一系列的茚并哒嗪衍生物;在克级实验研究中,目标产物的产率可以达到81%,证明了该反应具有潜在的应用价值。
为了提高磁方位角的测量精度,获得精确的磁偏角信息,通常需要构建更高精度的当地地磁模型。相较于全球地磁模型,当地地磁模型包含地下磁矿脉在地表引发的磁异常信息。由于地下磁矿脉的埋藏深度和规模不同,其对不同井深处磁偏角的影响也各不相同。因此,在中深井(Z井)方位角校正时,有必要考虑地下磁矿脉的影响。利用ANSYS Maxwell数值模拟软件,建立了考虑埋藏深度、规模磁矿脉影响的地磁场模型;通过数值模拟,并结合中深井的实际钻井眼轨迹,提出了一种方位角校正方法,并量化评估了地下磁矿脉对方位角和井眼轨迹的影响。结果表明,在磁矿脉埋深达到2 100 m时,地下磁矿脉对2 000 m 地层厚度内钻井方位角影响的偏移量约为0.6°;若考虑地下磁矿脉的影响,井眼轨迹难免会发生偏移,且偏移量随着井深的增加而增大,这可能会导致中深井脱靶等事故。因此,进行地下磁矿脉影响下的方位角校正对提高方位角测量精度、实现精准导向具有重要意义。
成品油管道泄漏会造成环境污染,威胁居民的生命安全,因此对成品油管道泄漏进行监测和识别具有重要意义。建立成品油起伏管道泄漏监测识别模型,并通过控制阀门开度制造压力波,监测识别管道泄漏位置,研究了阀门开度、阀门起闭间隔时间对泄漏定位精度的影响。结果表明,泄漏监测识别模型对中孔泄漏识别精度较高,而对小孔和大孔的识别预测能力较低,泄漏定位的相对误差较大;当阀门开度由90%分别降至10%、30%和50%时,压力波波动信号的振动幅度均降低,通过泄漏监测识别模型计算的泄漏定位的相对误差逐渐增大,推荐阀门开度由90%降至10%;随着阀门启闭间隔时间的增加,因压力波信号和压力波返回信号相互影响,通过泄漏监测识别模型计算的泄漏定位的相对误差越来越大,推荐阀门启闭间隔时间为1 s。
中俄东线某站场过滤分离区为并联管路,由于管内压力和管道布局的不同可能会出现支管流量分配不均的问题,影响过滤效果和整体工作效率。为避免管路偏流,使用计算流体动力学(CFD)方法进行了过滤分离区流量流向研究。结果表明,系统内压力分布、湍流分布、沿程摩阻损失、流体惯性等因素共同影响支管流量分配;在11种并联管路布置方式中,进出口在同侧的轴向进径向出方式3总体上偏流情况最小;正常工况下,在计算范围内偏流情况随汇管直径、支管中心间距的增大而减小;支管堵塞的故障工况会使系统的偏流程度大幅度增大。通过研究得到了并联管路流量分配规律和影响流量分配的主要因素,研究结果有助于指导输气站场的设计与建设。
供气可靠性优化分配是天然气管道系统供气可靠性的重要组成部分,为了研究成本最低的供气可靠性优化分配方案,构建了基于管道系统供气能力的费用函数模型;针对粒子群等传统优化智能算法更新迭代过程中未涉及约束条件,提出了一种基于外点罚函数法的天然气管道系统供气可靠性优化方法;将优化分配模型中约束条件转化为惩罚函数项,构造新的目标函数,将有约束分配问题转化为无约束极值问题;针对某天然气管道系统,基于外点罚函数法进行供气可靠性优化分配,得到了供气可靠性优化分配值。结果表明,外点罚函数法在保证精确度的同时,能够显著缩短运算时间;分配结果具有良好的收敛性且符合工程实际;通过明确单元供气可靠性优化分配值,将其与当前可靠度对比,能够识别系统供气薄弱单元,为提高管道系统供气可靠性提供科学依据。
为考察烃类族组成对喷气燃料理化性质的影响,分别将煤基航煤和生物航煤加入3号喷气燃料中,按照GB 6537-2018《3号喷气燃料》规定的实验方法对喷气燃料的17项理化性质进行了检测。结果表明,烃类族组成是喷气燃料8项理化性质的主要影响因素,随着链烷烃质量分数的增加或者环烷烃质量分数的降低,10%回收温度、50%回收温度、终馏点、冰点、-20 ℃运动黏度和烟点基本单调降低,而密度和体积净热值单调升高;烃类族组成是其余9项理化性质的非主要影响因素,链烷烃质量分数的增加或降低均会导致闪点、萘系烃体积分数降低,链烷烃和环烷烃质量分数对质量净热值、腐蚀性、热安定性、胶质质量浓度、水反应界面情况、水反应分离程度和水分离指数几乎没有影响。在航空替代燃料与喷气燃料掺配使用时,可以根据烃类族组成对喷气燃料理化性质的影响规律对掺配后燃料的理化性质进行一定程度的预测,从而减少实验次数,提高效率。
针对某油田在开发过程中出现油井堵塞的难题,以Y3原油为研究对象,通过室内实验分析了原油的组成以及井筒堵塞物的主要成分;对油田收集的地层堵塞物进行甲苯抽提,并利用XRD分析了甲苯不溶物的成分;对可溶物部分进行四组分分离,并重点研究了可溶物及Y3油样中沥青质的组成及性质;通过沥青质吸附实验,测量油水界面张力、水下接触角等,探究沥青质极性和芳香性对其界面性质的影响。结果表明,该油井的地层堵塞物主要矿物为石英、长石、方解石等;与Y3原油中沥青质相比,堵塞物中的沥青质分子质量更大,杂原子质量分数以及芳碳率更高,堵塞物中含蜡极少;井筒堵塞的主要原因是沥青质在砂石上的吸附,沥青质杂原子质量分数及极性对吸附量和界面张力等有较大的影响。
作为重油轻质化的核心,催化裂化装置一直是我国石油化工企业经济效益的主要支柱。介绍了国内催化裂化技术的发展历程,并依据目标产物的不同,从油品生产技术、多产低碳烯烃技术、产品结构调整技术等3个方面,综述了国内催化裂化技术的发展现状;总结了不同催化裂化技术的设计思路、主要特点及工业应用效果,重点对比了不同技术所使用的反应器型式与催化剂类型的异同;探讨了催化裂化技术在提升油品质量及满足市场需求,提高低碳烯烃、BTX(苯、甲苯、二甲苯)等基础化工原料产率及选择性等方面开展的研究工作,为企业高质量发展提供了可选的技术方案。原料重质化多样化、产品质量优质化、产品结构灵活化、生产过程清洁化等仍是今后催化裂化技术的研究重点。