1 |
HASSAN Q, SAMEEN A Z, SALMAN H M, et al. Hydrogen energy future: Advancements in storage technologies and implications for sustainability[J]. Journal of Energy Storage, 2023, 72(Part B): 108404.
|
2 |
宋楗, 韩乔, 杨占旭. NiMoP/C复合材料的制备及其电催化析氢性能[J]. 石油化工高等学校学报, 2022, 35(1): 1⁃9.
|
|
SONG J, HAN Q, YANG Z X. Preparation of NiMoP/C composite material and electrocatalytic hydrogen evolution performance[J]. Journal of Petrochemical Universities, 2022, 35(1): 1⁃9.
|
3 |
张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 19⁃27.
|
|
ZHANG Y J, ZHANG B S, SUN J. Progress in hydrogen production by water electrolysis and its electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35(6): 19⁃27.
|
4 |
王佳乐, 武宏大, 韩乔, 等. 钼基量子点制备的研究进展[J]. 石油化工高等学校学报, 2023, 36(5): 52⁃59.
|
|
WANG J L, WU H D, HAN Q, et al. Research progress in preparation of molybdenum⁃based quantum dots[J]. Journal of Petrochemical Universities, 2023, 36(5): 52⁃59.
|
5 |
WANG S, LU A L, ZHONG C J. Hydrogen production from water electrolysis: Role of catalysts[J]. Nano Convergence, 2021, 8(1): 4.
|
6 |
YOU B, SUN Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571⁃1580.
|
7 |
LIU X, CHI J Q, DONG B, et al. Recent progress in decoupled H2 and O2 production from electrolytic water splitting[J]. ChemElectroChem, 2019, 6(8): 2157⁃2166.
|
8 |
LIU Y Y, ZHOU D J, DENG T Y, et al. Research progress of oxygen evolution reaction catalysts for electrochemical water splitting[J]. ChemSusChem, 2021, 14(24): 5359⁃5383.
|
9 |
XIE Q X, REN D, BAI L C, et al. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes[J]. Chinese Journal of Catalysis, 2023, 44: 127⁃138.
|
10 |
WANG H, JIANG H M, GAO C, et al. Self supported FeS/Fe5Ni4S8 heterostructure catalyst for efficient water splitting[J]. Chemical Engineering Journal, 2024, 501: 157738.
|
11 |
QIAN Z X, LIANG G H, SHEN L F, et al. Phase engineering facilitates O-O coupling via lattice oxygen mechanism for enhanced oxygen evolution on nickel–iron phosphide[J]. Journal of the American Chemical Society, 2025, 147(1): 1334⁃1343.
|
12 |
HAN Y J, WANG J Y, LIU Y H, et al. Stability challenges and opportunities of NiFe⁃based electrocatalysts for oxygen evolution reaction in alkaline media[J]. Carbon Neutralization, 2024, 3(2): 172⁃198.
|
13 |
WANG J Y, XING Z Y, KANG R Y, et al. Metal nitride controlled atomic doping of Mox+ in NiFe(Oxy)hydroxide to trigger lattice oxygen‐mediated mechanism for superior oxygen evolution[J]. Advanced Functional Materials, 2025, 35(14): 2418439.
|
14 |
MU L, YING J F, OU Y Y, et al. Cation⁃anion modification and heterostructure for cooperative regulation of electron distribution in NiMoS/NiFeMn⁃LDH electrocatalyst to enhance water splitting[J]. Journal of Colloid and Interface Science, 2025, 688: 106⁃117.
|
15 |
LIU F X, LIANG Q, LI Z Y, et al. Hierarchical FeOxHy@Ni3B hybrid for efficient alkaline oxygen evolution at high current density[J]. Journal of Energy Chemistry, 2024, 94: 599⁃607.
|
16 |
WU F Y, TIAN F Y, LI M G, et al. Engineering lattice oxygen regeneration of NiFe layered double hydroxide enhances oxygen evolution catalysis durability[J]. Angewandte Chemie International Edition, 2025, 64(1): e202413250.
|
17 |
CHEN M X, ZHANG Y Y, CHEN J, et al. In situ raman study of surface reconstruction of FeOOH/Ni3S2 oxygen evolution reaction electrocatalysts[J]. Small, 2024, 20(23): 2309371.
|
18 |
WU L B, NING M H, XING X X, et al. Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions[J]. Advanced Materials, 2023, 35(44): e2306097.
|
19 |
XIONG X Y, CAI Z, ZHOU D J, et al. A highly⁃efficient oxygen evolution electrode based on defective nickel⁃iron layered double hydroxide[J]. Science China Materials, 2018, 61(7): 939⁃947.
|
20 |
ZHANG H Y,WU L L,FENG R H,et al.Oxygen vacancies unfold the catalytic potential of NiFe⁃layered double hydroxides by promoting their electronic transport for oxygen evolution reaction[J].ACS Catalysis,2023,13(9): 6000⁃6012.
|
21 |
LIU R N, YAN Y T, DUN L, et al. Oxygen vacancy⁃mediated high⁃entropy oxide electrocatalysts for efficient oxygen evolution reaction[J]. Materials Today Catalysis, 2025, 8: 100086.
|
22 |
LI Z Y, WANG D, XU J L, et al. Constructing surface concave defects on NiFe layered double hydroxides by electrochemical reduction for efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2024, 482: 148858.
|
23 |
HE L X, WANG N, XIANG M L, et al. S⁃vacancy⁃rich NiFe⁃S nanosheets based on a fully electrochemical strategy for large⁃scale and quasi⁃industrial OER catalysts[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123686.
|
24 |
TAO Y R, YUAN J J, QIAN X Y, et al. Spinel⁃type FeNi2S4 with rich sulfur vacancies grown on reduced graphene oxide toward enhanced supercapacitive performance[J]. Inorganic Chemistry Frontiers, 2021, 8(9): 2271⁃2279.
|
25 |
QI J L, XU T X, CAO J, et al. Fe doped Ni5P4 nanosheet arrays with rich P vacancies via phase transformation for efficient overall water splitting[J]. Nanoscale, 2020, 12(10): 6204⁃6210.
|
26 |
CHEN X, YU M, YAN Z H, et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching[J]. CCS Chemistry, 2021, 3(1): 675⁃685.
|
27 |
GE J J, ZHENG J Y, ZHANG J W, et al. Controllable atomic defect engineering in layered NixFe1⁃ x(OH)2 nanosheets for electrochemical overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(25): 14432⁃14443.
|
28 |
PENG L S, YANG N, YANG Y Q, et al. Atomic cation⁃vacancy engineering of NiFe⁃layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(46): 24612⁃24619.
|
29 |
LI Z, ZHOU Y G, XIE M H, et al. High⁃density cationic defects coupling with local alkaline⁃enriched environment for efficient and stable water oxidation[J]. Angewandte Chemie International Edition, 2023, 62(26): e202217815.
|
30 |
ZHANG X, ZHAO Y F, ZHAO Y X, et al. A simple synthetic strategy toward defect⁃rich porous monolayer NiFe⁃layered double hydroxide nanosheets for efficient electrocatalytic water oxidation[J]. Advanced Energy Materials, 2019, 9(24): 1900881.
|
31 |
LIAO Y Y, HE R C, PAN W H, et al. Lattice distortion induced Ce⁃doped NiFe⁃LDH for efficient oxygen evolution[J]. Chemical Engineering Journal, 2023, 464: 142669.
|
32 |
WANG N, WANG X Y, SHAN Y, et al. Ce⁃doped NiFe layered double hydroxide coated NiMoOxS4- x compounds: An efficient OER catalyst in alkaline solution[J]. Reaction Chemistry & Engineering, 2023, 8(11): 2746⁃2756.
|
33 |
WU Q, HUANG L L, CHEN L, et al. Ce⁃doped NiFe layered double hydroxide grown on nickel foam for efficient oxygen evolution reaction[J]. Journal of Applied Electrochemistry, 2025,55(6):1415⁃1428.
|
34 |
WANG J X, SUN X L, HU H B, et al. Electrodeposition of defect⁃rich ternary NiCoFe layered double hydroxides: Fine modulation of Co3+ for highly efficient oxygen evolution reaction[J]. Chemistry, 2022, 28(6): e202103601.
|
35 |
SONG Y J,ZHANG B Z,LI T X,et al.Dynamic homogenization of internal strain in multi⁃principal element alloy via high⁃concentration doping of oxygen with large mobility[J]. Small Methods, 2024, 8(1): 2300871.
|
36 |
HUANG L L, CHEN R, XIE C, et al. Rapid cationic defect and anion dual⁃regulated layered double hydroxides for efficient water oxidation[J]. Nanoscale, 2018, 10(28): 13638⁃13644.
|
37 |
YE Y, GAN Y H, CAI R, et al. Oxygen vacancies and surface reconstruction on NiFe LDH@Ni(OH)2 heterojunction synergistically triggering oxygen evolution and urea oxidation reaction[J]. Journal of Alloys and Compounds, 2022, 921: 166145.
|
38 |
WU K L, SHI L X, WANG Z D, et al. A general strategy to generate oxygen vacancies in bimetallic layered double hydroxides for water oxidation[J]. Chemical Communications, 2023, 59(21): 3138⁃3141.
|
39 |
LI X T, LIU Y Z, SUN Q D, et al. Effects of cationic and anionic defects on NiFe LDH in electrocatalytic oxygen evolution[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14474⁃14485.
|
40 |
CAI Z Y, WANG P, ZHANG J J, et al. Reinforced layered double hydroxide oxygen⁃evolution electrocatalysts: A polyoxometallic acid wet⁃etching approach and synergistic mechanism[J]. Advanced Materials, 2022, 34(26): e2110696.
|
41 |
LIU S X, ZHANG H W, HU E L, et al. Boosting oxygen evolution activity of NiFe⁃LDH using oxygen vacancies and morphological engineering[J]. Journal of Materials Chemistry A, 2021, 9(41): 23697⁃23702.
|
42 |
WANG L M,ZHANG L L,MA W,et al.In situ anchoring massive isolated Pt atoms at cationic vacancies of α⁃NixFe1- x(OH)2 to regulate the electronic structure for overall water splitting[J]. Advanced Functional Materials, 2022, 32(31): 2203342.
|
43 |
WANG Y Y,QIAO M,LI Y F,et al.Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction[J].Small,2018,14(17):e1800136.
|
44 |
XIE Q X, CAI Z, LI P S, et al. Layered double hydroxides with atomic⁃scale defects for superior electrocatalysis[J]. Nano Research, 2018, 11(9): 4524⁃4534.
|
45 |
ZHU Z X, YANG X T, LIU J, et al. Handily etching nickel foams into catalyst⁃substrate fusion self⁃stabilized electrodes toward industrial⁃level water electrolysis[J]. Carbon Energy, 2023, 5(10): e327.
|
46 |
SHI J M, LIU X R, BAI X F. Effect of N⁃doping, exfoliation, defect⁃inducing of Ni⁃Fe layered double hydroxide (Ni⁃Fe LDH) nanosheets on catalytic hydrogen storage of N⁃ethylcarbazole over Ru/Ni⁃Fe LDH[J]. Fuel, 2021, 306: 121688.
|
47 |
WEN D Y, LI Y C, ZHAO J W, et al. High⁃precision and high⁃speed etching of diamond surfaces using Fe⁃Ni alloy catalyzed H-O plasma etching[J]. Carbon, 2024, 218: 118733.
|
48 |
ZHANG Y, HUANG H M, XIE W Q, et al. Radio frequency plasma⁃engraved vacancy engineering towards robust hydrogen⁃evolving catalysts with large⁃current stable catalytic activity for over 1 000 h[J]. Science China Materials, 2025, 68(4): 1129⁃1137.
|
49 |
TANG Y H, LIU Q, DONG L, et al. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction[J]. Applied Catalysis B: Environmental, 2020, 266: 118627.
|
50 |
DOU S, TAO L, WANG R L, et al. Plasma⁃assisted synthesis and surface modification of electrode materials for renewable energy[J]. Advanced Materials, 2018, 30(21): e1705850.
|
51 |
WANG T H, FU X Z, WANG S Y. Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction[J]. Green Energy & Environment, 2022, 7(3): 365⁃371.
|
52 |
WEI Y P, YI L Y, WANG R F, et al. A unique etching⁃doping route to Fe/Mo Co⁃doped Ni oxyhydroxide catalyst for enhanced oxygen evolution reaction[J]. Small, 2023, 19(37): 2301267.
|
53 |
YUAN Z J, BAK S M, LI P S, et al. Activating layered double hydroxide with multivacancies by memory effect for energy⁃efficient hydrogen production at neutral pH[J]. ACS Energy Letters, 2019, 4(6): 1412⁃1418.
|
54 |
ZHOU D J, XIONG X Y, CAI Z, et al. Flame⁃engraved nickel⁃iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity[J]. Small Methods, 2018, 2(7): 1800083.
|
55 |
WU Y J, YANG J, TU T X, et al. Evolution of cationic vacancy defects:A motif for surface restructuration of OER precatalyst[J]. Angewandte Chemie International Edition, 2021, 60(51): 26829⁃26836.
|
56 |
ZHAO Z Y, SHAO Q, XUE J Y, et al. Multiple structural defects in ultrathin NiFe⁃LDH nanosheets synergistically and remarkably boost water oxidation reaction[J]. Nano Research, 2022, 15(1): 310⁃316.
|
57 |
ZHANG X B, DONG H H, JIANG H M, et al. Trivalent cation defect optimization spin state of nickel(Ⅱ) in NiFe⁃layered double hydroxide nanosheets for oxygen evolution[J]. ACS Applied Nano Materials, 2024, 7(14): 17092⁃17100.
|
58 |
CHEN Y H, XU J, CHEN Y J, et al. Rapid defect engineering in FeCoNi/FeAl2O4 hybrid for enhanced oxygen evolution catalysis: A pathway to high⁃performance electrocatalysts[J]. Angewandte Chemie International Edition, 2024, 63(28): e202405372.
|
59 |
JIANG L B, JIANG L T, LUO X, et al. Iron⁃induced vacancy and electronic regulation of nickle phosphides for ampere⁃level alkaline water/seawater splitting[J]. Chemical Engineering Journal, 2024, 502: 157952.
|
60 |
ZHAO Y X, WEN Q L, HUANG D J, et al. Operando reconstruction toward dual‐cation‐defects Co⁃containing NiFe oxyhydroxide for ultralow energy consumption industrial water splitting electrolyzer[J]. Advanced Energy Materials, 2023, 13(10): 2203595.
|