提出一种控制参数协进化的差分进化算法(DE-CPCE),实现算法控制参数随种群搜优进展,自适应动态调整。D E-CPCE算法将控制参数作为原始个体的共生个体,且每一个原始个体都有各自的共生个体;算法在对原优化问题进行差分进化搜优的同时,以原始个体进化效率作为共生个体(即控制参数)的评价,并通过共生个体的差分进化操作实现其协进化。D E-CPCE算法能随优化问题搜优进展,自适应动态调整算法控制参数,实时为算法搜优提供最优的控制参数。仿真研究表明,DE-CPCE算法的控制参数具有动态自适应性;并且在与文中所提及的算法(DE/rand/1,DE/best/1,DE/rand-to-best/1,DE/rand/2,DE/best/2,self-adaptive Pareto DE and self-adaptive DE)比较中,该算法能以较高概率求得全局最优值,且收敛速率快,求得最优解的精度高。同时,应用 DE-CPCE算法估计 SO2催化氧化反应动力学模型参数,结果优于文献报道。