| [1] |
YERGAZIYEVA G, KUSPANOV Z, MAMBETOVA M, et al. Advancements in catalytic, photocatalytic, and electrocatalytic CO2 conversion processes: Current trends and future outlook[J]. Journal of CO2 Utilization, 2024, 80: 102682.
|
| [2] |
陈亚辉, 赵文凯, 史莉莉, 等. 离子液体催化CO2与环氧丙烷合成碳酸丙烯酯的反应动力学研究[J]. 石油炼制与化工, 2022, 53(1): 41-45.
|
|
CHEN Y H, ZHAO W K, SHI L L, et al. Study on reaction kinetics of synthesizing propylene carbonate from carbon dioxide and propylene oxide catalyzed by ionic liquids[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 41-45.
|
| [3] |
谢卓涵, 王馨瑶, 张志智, 等. CO2环加成的多相催化剂制备及其应用[J]. 当代化工, 2024, 53(5): 1158-1161.
|
|
XIE Z H, WANG X Y, ZHANG Z Z, et al. Preparation and applications of multiphase catalysts for CO2 cycloadditio[J]. Contemporary Chemical Industry, 2024, 53(5): 1158-1161.
|
| [4] |
ZHAO Z T, WANG Y X, XU G W, et al. In-situ synthesis of a heterogeneous NHC–CO2 catalyst for continuous DMC production[J]. Journal of Catalysis, 2025, 442: 115910.
|
| [5] |
LEE Y G, LEE H U, LEE J M, et al. Design of dimethyl carbonate (DMC) synthesis process using CO2, techno-economic analysis, and life cycle assessment[J]. Korean Journal of Chemical Engineering, 2024, 41(1): 117-133.
|
| [6] |
KIM S, LEE S G, JEONG D H. Direct synthesis of dimethyl carbonate from CO2: From the perspective of dimethyl-carbonate, a promising material for the future[J]. Chemical Engineering Research and Design, 2024, 203: 630-639.
|
| [7] |
HOU G Q, WANG Q, XU D, et al. Dimethyl carbonate synthesis from CO2 over CeO2 with electron-enriched lattice oxygen species[J]. Angewandte Chemie International Edition, 2024, 63(19): e202402053.
|
| [8] |
陈晓雨, 王春蓉, 孙京, 等. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44.
|
|
CHEN X Y, WANG C R, SUN J, et al. Synthesis of cyclic carbonate from carbon dioxide catalyzed by different morphologies CeO2[J]. Journal of Petrochemical Universities, 2023, 36(5): 38-44.
|
| [9] |
KANG L, ZHANG J Y, WANG S P. Surface-dependent role of oxygen vacancies in dimethyl carbonate synthesis from CO2 and methanol over CeO2 catalysts[J]. ACS Applied Materials & Interfaces, 2025, 17(10): 16132-16144.
|
| [10] |
ZHANG Q Y, ZHANG D D, MAO W, et al. Synthesis of dimethyl carbonate from CO2 and methanol over Zn modified CeO2 with 2-cyanopyridine: Theoretical calculation and experiment[J]. Separation and Purification Technology, 2024, 339: 126217.
|
| [11] |
LIU N, XUE Y, YU Z R, et al. Zn-doped CeO2 nanorods: A highly efficient heterogeneous catalyst for the direct synthesis of dimethyl carbonate from CO2 and methanol[J]. ChemistrySelect, 2023, 8(3): e202203472.
|
| [12] |
SUN N N, SHAH S S A, LIN Z Y, et al. MOF-based electrocatalysts: An overview from the perspective of structural design[J]. Chemical Reviews, 2025, 125(5): 2703-2792.
|
| [13] |
高燕, 闫苗, 赵建社. MOF-199固载过氧化磷钨酸盐催化剂的制备及其在柴油脱硫中的应用[J]. 石油学报(石油加工), 2023, 39(2): 349-357.
|
|
GAO Y, YAN M, ZHAO J S. Preparation of MOF-199 supported peroxophosphotungstate catalyst and its application in diesel desulfurization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(2): 349-357.
|
| [14] |
葛维翰, 黄龙, 张晨. 金属有机骨架材料对苯乙烯废气的吸附[J]. 化工环保, 2023, 43(5): 638-643.
|
|
GE W H, HUANG L, ZHANG C. Adsorption of styrene waste gas on metal-organic framework materials[J]. Environmental Protection of Chemical Industry, 2023, 43(5): 638-643.
|
| [15] |
XUAN K, PU Y F, LI F, et al. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chinese Journal of Catalysis, 2019, 40(4): 553-566.
|
| [16] |
HUO L M, WANG L, LI J J, et al. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Journal of CO2 Utilization, 2023, 68: 102352.
|
| [17] |
XUAN K, PU Y F, LI F, et al. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66[J]. Journal of CO2 Utilization, 2018, 27: 272-282.
|
| [18] |
JIANG Z Y, ZHAO S Y, YANG Y H, et al. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol over Ce-BTC-derived CeO2[J]. Chemical Engineering Science, 2023, 275: 118760.
|
| [19] |
ZHANG X D, HOU F L, YANG Y, et al. A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation[J]. Applied Surface Science, 2017, 423: 771-779.
|
| [20] |
XIE S H, TAN W, XU Y H, et al. Pd-CeO2 catalyst facilely derived from one-pot generated Pd@Ce-BTC for low temperature CO oxidation[J]. Journal of Hazardous Materials, 2024, 466: 133632.
|
| [21] |
WANG F, JIN Y L, XUE Y, et al. Mn‐doped CeO2 derived from Ce-MOF porous nanoribbons as highly active catalysts for the synthesis of dimethyl carbonate from CO2 and methanol[J]. Environmental Science and Pollution Research, 2024, 31(35): 47911-47922.
|
| [22] |
KIM K J, JUN KIM Y, HYUN KIM D, et al. Zr doping on CeO2 nanocube catalysts to enhance oxygen storage capacity for water-gas shift reaction[J]. Chemical Engineering Journal, 2024, 495: 153634.
|
| [23] |
BAWEJA R, VERMA M, GAUTAM S, et al. Enhanced electrochemical performance of Ce-MOF/h-CeO2 composites for high-capacitance energy storage applications[J]. RSC Advances, 2024, 14(25): 17855-17865.
|
| [24] |
MANSINGH S, SUBUDHI S, SULTANA S, et al. Cerium-based metal-organic framework nanorods nucleated on CeO2 nanosheets for photocatalytic N2 fixation and water oxidation[J]. ACS Applied Nano Materials, 2021, 4(9): 9635-9652.
|
| [25] |
GANIE A S, HUSSAIN S, BHAT A A, et al. Surface-directed modulation of MOF-templated Ni-doped CeO2 mesoporous spheres for ultrasensitive H2S detection at ppb level[J]. Journal of Environmental Chemical Engineering, 2025, 13(6): 119346.
|
| [26] |
JIANG Y W, GAO J H, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template[J]. Chemical Engineering Journal, 2019, 371: 78-87.
|
| [27] |
MEI J, ZHANG S H, PAN G J, et al. Surfactant-assisted synthesis of MOF-derived CeO2 for low-temperature catalytic o-xylene combustion[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108743.
|
| [28] |
WANG F, YU Z R, WEI X J, et al. Pt/Ce-La nanocomposite for hydrogenation promoted by a synergistic effect of support with redox and basic property[J]. Catalysis Letters, 2022, 152(12): 3669-3678.
|
| [29] |
WANG F, DA B, WAN T T, et al. CeO2/beta composite catalysts in dimethyl carbonate synthesis from CO2: Effect of preparation method on surface oxygen species[J]. Reaction Kinetics Mechanisms and Catalysis, 2025, 138(2): 845-858.
|
| [30] |
XU S Y, CAO Y X, LIU Z M. Dimethyl carbonate synthesis from CO2 and methanol over CeO2-ZrO2 catalyst[J]. Catalysis Communications, 2022, 162: 106397.
|
| [31] |
WANG F, YU Z R, ZHAI S, et al. CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature[J]. Environmental Science and Pollution Research International, 2023, 30(11): 31895-31904.
|
| [32] |
WANG F, WAN T T, XUE Y, et al. Ga-doped CeO2 nanorods as highly active catalysts for the synthesis of dimethyl carbonate from CO2 and methanol[J]. Reaction Kinetics Mechanisms and Catalysis, 2023, 136(6): 2941-2954.
|