石油化工高等学校学报 ›› 2024, Vol. 37 ›› Issue (2): 31-41.DOI: 10.12422/j.issn.1006-396X.2024.02.005
收稿日期:
2023-05-05
修回日期:
2023-06-20
出版日期:
2024-04-25
发布日期:
2024-04-24
通讯作者:
毕研峰
作者简介:
刘世佳(1997⁃),女,硕士研究生,从事丙烷脱氢γ⁃Al2O3载体等方面的研究;E⁃mail:liushijialnpu@163.com。
基金资助:
Shijia LIU(), Kai HE, Yanfeng BI(), Lijuan SONG
Received:
2023-05-05
Revised:
2023-06-20
Published:
2024-04-25
Online:
2024-04-24
Contact:
Yanfeng BI
摘要:
γ-Al2O3为催化剂常用的载体,其表面物化性质对催化反应影响较大。通过改变合成方法和条件,可调控γ-Al2O3的载体形貌及载体表面Al的配位环境。不同形貌的载体暴露晶面所需能量不同,其直接影响载体的表面酸性,并影响活性金属之间以及活性金属与载体之间的相互作用,从而创造活性金属不同的锚位点,因此控制载体形貌是调控活性组分结构的有效方式。丙烷脱氢催化剂的载体形貌影响催化剂的催化性能。从γ-Al2O3载体的制备方法、形貌控制及其对丙烷脱氢催化剂的影响等几个方面,综述了相关领域的研究进展。
中图分类号:
刘世佳, 何凯, 毕研峰, 宋丽娟. γ⁃Al2O3载体的形貌调控及其对丙烷脱氢催化剂的影响综述[J]. 石油化工高等学校学报, 2024, 37(2): 31-41.
Shijia LIU, Kai HE, Yanfeng BI, Lijuan SONG. A Review of the Morphological Regulation of γ⁃Al2O3 Spport and Its Effect on Propane Dehydrogenation Catalysts[J]. Journal of Petrochemical Universities, 2024, 37(2): 31-41.
图1 γ?Al2O3形貌对表面酸性、Al配位数以及催化性能的影响[41?42,45](a) 吡啶红外测定的表面酸性 (b) 核磁共振测定的Al配位 (c) Al配位对催化反应的影响
Fig.1 Influence of γ?Al2O3 morphology on surface acidity, Al coordination number and catalytic performance[41?42,45]
载体 形貌 | 催化剂 | 反应条件 | 反应效果 | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 质量空速/h-1 | 进料 | C3H8 转化率/% | C3H6 选择性/% | |||
纳米片 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 31.0 | 81.0 | [ |
纳米纤维 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 37.0 | 80.0 | [ |
纳米板 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 41.0 | 70.0 | [ |
片状 | PtSn/γ⁃Al2O3 | 590 | 9.40 | C3H8(16.2 kPa)+H2(20.3 kPa)+N2 | 48.7 | 99.1 | [ |
块状 | Pt⁃Sn2/γ⁃Al2O3 | 570 | 2.90 | n(C3H8)∶n(H2)=1∶1,N2流量为50 mL/min | 47.0 | - | [ |
片状 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 52.9 | 98.0 | [ |
棒状 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 56.6 | 96.2 | [ |
长棒 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 45.9 | 98.5 | [ |
杨桃状 | PtSn/γ⁃Al2O3 | 600 | 20 000 mL/(h·g) | n(C3H8)/n(H2)=1∶3 | 22.0 | 80.0 | [ |
块状 | Pt⁃Sn/γ⁃Al2O3 | 600 | 3.20 | C3H8 | 35.6 | 88.5 | [ |
棒状 | CrO x ⁃K/γ⁃Al2O3 | 600 | - | C3H8 | 33.2 | 90.4 | [ |
球状 | Pt/Sn10⁃γ⁃Al2O3 | 610 | - | n(C3H8)/n(H2)=2∶1 | 35.0 | 93.5 | [ |
表1 以不同形貌γ?Al2O3为载体的丙烷脱氢催化剂的性能
Table 1 Properties of propane dehydrogenation catalysts with different morphologies γ?Al2O3 as the support
载体 形貌 | 催化剂 | 反应条件 | 反应效果 | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 质量空速/h-1 | 进料 | C3H8 转化率/% | C3H6 选择性/% | |||
纳米片 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 31.0 | 81.0 | [ |
纳米纤维 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 37.0 | 80.0 | [ |
纳米板 | Co/γ⁃Al2O3 | 600 | 3.30 | n(C3H8)/n(H2)=4∶1 | 41.0 | 70.0 | [ |
片状 | PtSn/γ⁃Al2O3 | 590 | 9.40 | C3H8(16.2 kPa)+H2(20.3 kPa)+N2 | 48.7 | 99.1 | [ |
块状 | Pt⁃Sn2/γ⁃Al2O3 | 570 | 2.90 | n(C3H8)∶n(H2)=1∶1,N2流量为50 mL/min | 47.0 | - | [ |
片状 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 52.9 | 98.0 | [ |
棒状 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 56.6 | 96.2 | [ |
长棒 | PtSn/γ⁃Al2O3 | 590 | 2.35 | n(C3H8)/n(N2)=1∶2 | 45.9 | 98.5 | [ |
杨桃状 | PtSn/γ⁃Al2O3 | 600 | 20 000 mL/(h·g) | n(C3H8)/n(H2)=1∶3 | 22.0 | 80.0 | [ |
块状 | Pt⁃Sn/γ⁃Al2O3 | 600 | 3.20 | C3H8 | 35.6 | 88.5 | [ |
棒状 | CrO x ⁃K/γ⁃Al2O3 | 600 | - | C3H8 | 33.2 | 90.4 | [ |
球状 | Pt/Sn10⁃γ⁃Al2O3 | 610 | - | n(C3H8)/n(H2)=2∶1 | 35.0 | 93.5 | [ |
1 | 赵俊宇,张洁,陈金伟,等.丙烷直接脱氢制丙烯催化剂研究进展[J].工业催化,2023,31(3):1⁃19. |
ZHAO J Y,ZHANG J,CHEN J W,et al.Advances on catalysts for direct dehydrogenation of propane to propylene[J]. Industrial Catalysis,2023,31(3):1⁃19. | |
2 | 唐国旗,张春富,孙长山,等.活性氧化铝载体的研究进展[J].化工进展,2011,30(8):1756⁃1765. |
TANG G Q,ZHANG C F,SUN C S,et al.Research progress of γ⁃alumina support[J].Chemical Industry and Engineering Progress,2011,30(8):1756⁃1765. | |
3 | 冯静,张明森,柯丽,等.丙烷脱氢催化剂研究进展[J].工业催化,2011,19(3):8⁃14. |
FENG J,ZHANG M S,KE L,et al.Research progress in propane dehydrogenation catalysts[J].Industrial Catalysis,2011, 19(3):8⁃14. | |
4 | GUAN C H,XU Z M,ZHU H,et al.Insights into the mechanism of fluoride adsorption over different crystal phase alumina surfaces[J].Journal of Hazardous Materials,2022,423(Pt B):127109. |
5 | GANGWAR J,GUPTA B K,TRIPATHI S K,et al.Phase⁃dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis[J].Nanoscale,2015,7(32):13313⁃13344. |
6 | LEVIN I,BRANDON D.Metastable alumina polymorphs:Crystal structures and transition sequences[J].Journal of the American Ceramic Society,1998,81(8):1995⁃2012. |
7 | BUSCA G.The surface of transitional aluminas:A critical review[J].Catalysis Today,2014,226:2⁃13. |
8 | DIXIT M,KOSTETSKYY P,MPOURMPAKIS G.Structure⁃activity relationships in alkane dehydrogenation on γ⁃Al2O3: Site⁃dependent reactions[J].ACS Catalysis,2018,8(12):11570⁃11578. |
9 | 许乃才,黄国勇,史丹丹,等.氧化铝基吸附材料制备及除氟研究进展[J].材料导报,2023,37(15):53⁃62. |
XU N C,HUANG G Y,SHI D D,et al.Research progress on preparation and fluoride removal of alumina⁃based adsorbents[J].Materials Reports,2023,37(15):53⁃62. | |
10 | 胡雨昊.氧化铝大孔构造和表面改性及其在加氢催化中的应用[D].北京:北京化工大学,2021. |
11 | 许颖睿.催化材料表面与孔道在加氢反应中的高效利用[D].厦门:厦门大学,2019. |
12 | ISLAM M J,GRANOLLERS MESA M,OSATIASHTIANI A,et al.PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural[J].Applied Catalysis B:Environmental,2021,299:120652. |
13 | RAO K T V,HU Y L,YUAN Z S,et al.Green synthesis of heterogeneous copper⁃alumina catalyst for selective hydrogenation of pure and biomass⁃derived 5⁃hydroxymethylfurfural to 2,5⁃bis(hydroxymethyl)furan[J].Applied Catalysis A:General,2021,609:117892. |
14 | 董云芸.多级孔氧化铝的研制及其在加氢处理催化剂中的应用[D].厦门:厦门大学,2018. |
15 | 闫洪振.微波作用下不同晶型氧化铝载体的加氢脱硫性能研究[D].北京: 中国石油大学(北京),2017. |
16 | 董安华.海藻酸铵辅助制备球形氧化铝载体及其在异丁烷脱氢中的性能研究[D].天津:天津大学,2016. |
17 | WANG P Z,XU Z K,WANG T H,et al.Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation[J]. Catalysis Science & Technology,2020,10(11):3537⁃3541. |
18 | SHAO H Q,WANG X,GU X,et al.Improved catalytic performance of CrOx catalysts supported on foamed Sn⁃modified alumina for propane dehydrogenation[J].Microporous and Mesoporous Materials,2021,311:110684. |
19 | GAO X Q,LI W C,QIU B,et al.Promotion effect of sulfur impurity in alumina support on propane dehydrogenation[J]. Journal of Energy Chemistry,2022,70:332⁃339. |
20 | 梁旭,刘艳侠,徐贤伦.表面改性氧化铝载体在合成MIBK中的应用[J].河南化工,2012,29(15):35⁃38. |
LIANG X,LIU Y X,XU X L.Study on surface modification of alumina for acetone condensation to methyl isobutyl ketone[J].Henan Chemical Industry,2012,29(15):35⁃38. | |
21 | 王嘉,彭冲,唐磊,等.渣油加氢催化剂活性相结构调控及对反应性能影响[J].化工进展,2023,42(4):1811⁃1821. |
WANG J,PENG C,TANG L,et al.Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance[J].Chemical Industry and Engineering Progress,2023,42(4):1811⁃1821. | |
22 | ONFROY T,LI W C,SCHÜTH F,et al.Surface chemistry of carbon⁃templated mesoporous aluminas[J].Physical Chemistry Chemical Physics,2009,11(19):3671⁃3679. |
23 | SRICHAROEN C,JONGSOMJIT B,PANPRANOT J,et al.The key to catalytic stability on sol⁃gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K⁃PtSn/Al2O3 toward propane dehydrogenation[J].Catalysis Today,2021,375:343⁃351. |
24 | 杨莹,宋杨,范晓强,等.丙烷脱氢制丙烯催化剂研究进展[J].工业催化,2021,29(3):1⁃10. |
YANG Y,SONG Y,FAN X Q,et al.Research progress on the catalysts for propane dehydrogenation to propylene[J]. Industrial Catalysis,2021,29(3):1⁃10. | |
25 | 徐志康,黄佳露,王廷海,等.丙烷脱氢制丙烯催化剂的研究进展[J].化工进展,2021,40(4):1893⁃1916. |
XU Z K,HUANG J L,WANG T H,et al.Advances in catalysts for propane dehydrogenation to propylene[J].Chemical Industry and Engineering Progress,2021,40(4):1893⁃1916. | |
26 | KRESGE C T,LEONOWICZ M E,ROTH W J,et al.Ordered mesoporous molecular sieves synthesized by a liquid⁃crystal template mechanism[J].Nature,1992,359(6397):710⁃712. |
27 | RYOO R,JOO S H,JUN S.Synthesis of highly ordered carbon molecular sieves via template⁃mediated structural transformation[J].The Journal of Physical Chemistry B,1999,103(37):7743⁃7746. |
28 | JUN S,JOO S H,RYOO R,et al.Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J].Journal of the American Chemical Society,2000,122(43):10712⁃10713. |
29 | PAVESE M,BIAMINO S.Mesoporous alumina obtained by combustion synthesis without template[J].Journal of Porous Materials,2009,16(1):59⁃64. |
30 | 李广慈,柳云骐,刘迪,等.不同形貌纳米薄水铝石的水/溶剂热合成及其催化应用[J].化工进展,2010,29(7):1215⁃1223. |
LI G C,LIU Y Q,LIU D,et al.Hydrothermal/solvothermal synthesis and potential catalytic application of nanoscale boehmite with different morphologies[J].Chemical Industry and Engineering Progress,2010,29(7):1215⁃1223. | |
31 | MAZIVIERO F V,MEDEIROS R L B A,MELO D M A,et al.Synthesis of alumina by microwave⁃assisted combustion method using low fuel content and its use as catalytic support for dry reforming of methane[J].Materials Chemistry and Physics,2021,264:124408. |
32 | JI Y B,WU Y S,LI L S.Synthesis and characterization of pseudoboehmite by neutralization method[J].Ceramics International,2021,47(11):15923⁃15930. |
33 | BENU D P,HARDIAN A,MUKTI R R,et al.Reverse micelle⁃mediated synthesis of plate⁃assembled hierarchical three⁃dimensional flower⁃like gamma⁃alumina particles[J].Microporous and Mesoporous Materials,2021,321:111055. |
34 | ZHOU J P,CAI W Q,YANG Z C,et al.N,N⁃dimethylformamide assisted facile hydrothermal synthesis of boehmite microspheres for highly effective removal of Congo red from water[J].Journal of Colloid and Interface Science,2021,583: 128⁃138. |
35 | KURAJICA S,MALI G,MANDIĆ V,et al.Tailoring microstructural, textural and thermal properties of γ⁃alumina by modifying aluminum sec⁃butoxide with ethyl acetoacetate within a sol⁃gel synthesis[J].Journal of Physics and Chemistry of Solids,2021,148:109783. |
36 | SUN X F,WU Y S,WANG Y Z,et al.Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel[J].Journal of Porous Materials,2019,26(2):327⁃333. |
37 | 汪洁.不同形貌氧化铝的可控制备及其CO催化氧化的应用研究[D].大连:大连理工大学,2013. |
38 | 闫翔云,季洪海,程福礼,等.焙烧温度对Al2O3微观结构和表面酸性的影响[J].石油炼制与化工,2011,42(11):41⁃45. |
YAN X Y,JI H H,CHENG F L,et al.Effect of calcination temperature on the microstructure and surface acidity of alumina[J].Petroleum Processing and Petrochemicals,2011,42(11):41⁃45. | |
39 | 季洪海,凌凤香,王少军,等.工业应用γ⁃Al2O3载体表面酸性与微观结构的关系[J].石油炼制与化工,2015,46(10):17⁃21. |
JI H H,LING F X,WANG S J,et al.Relationship between surface acidity and microstructure of industrial γ⁃alumina[J]. Petroleum Processing and Petrochemicals,2015,46(10):17⁃21. | |
40 | WANG X H,CUI J,ZHANG N,et al.Propane dehydrogenation over PtSn/Al2O3 catalysts:Influence of urea to Al(NO3)3·9H2O ratio[J].Catalysts,2022,12(2):157. |
41 | DEWANGAN N,ASHOK J,SETHIA M,et al.Cobalt⁃based catalyst supported on different morphologies of alumina for non⁃oxidative propane dehydrogenation:Effect of metal support interaction and lewis acidic sites[J].ChemCatChem,2019, 11(19):4923⁃4934. |
42 | SHI L,DENG G M,LI W C,et al.Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt⁃Sn clusters for propane dehydrogenation[J].Angewandte Chemie International Edition,2015,54(47):13994⁃13998. |
43 | JANG E J,LEE J,JEONG H Y,et al.Controlling the acid⁃base properties of alumina for stable PtSn⁃based propane dehydrogenation catalysts[J].Applied Catalysis A:General,2019,572:1⁃8. |
44 | 苗彩霞,刘萌,吴志杰.丙烷脱氢反应Pt基催化剂研究进展[J].石油学报(石油加工),2023,39(3):690⁃702. |
MIAO C X,LIU M,WU Z J.Research progress in Pt⁃based catalysts for propane dehydrogenation reaction[J].Acta Petrolei Sinica(Petroleum Processing),2023,39(3):690⁃702. | |
45 | ZHU X Y,WANG T H,XU Z K,et al.Pt⁃Sn clusters anchored at Al3+pentasites as a sinter⁃resistant and regenerable catalyst for propane dehydrogenation[J].Journal of Energy Chemistry,2022,65:293⁃301. |
46 | BAŁDYGA J,POHORECKI R.Turbulent micromixing in chemical reactors——A review[J].The Chemical Engineering Journal and the Biochemical Engineering Journal,1995,58(2):183⁃195. |
47 | JIA Z Q,LIU Z Z.Membrane⁃dispersion reactor in homogeneous liquid process[J].Journal of Chemical Technology and Biotechnology,2013,88(2):163⁃168. |
48 | GÜNTHER A,JENSEN K F.Multiphase microfluidics:From flow characteristics to chemical and materials synthesis[J]. Lab on a Chip,2006,6(12):1487⁃1503. |
49 | DU L,TAN J,WANG K,et al.Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J].Industrial & Engineering Chemistry Research,2011,50(14):8536⁃8541. |
50 | WAN Y C,LIU Y B,WANG Y J,et al.Preparation of large⁃pore⁃volume γ⁃alumina nanofibers with a narrow pore size distribution in a membrane dispersion microreactor[J].Industrial & Engineering Chemistry Research,2017,56(31):8888⁃8894. |
51 | 万莉莎,李菲,赵申远,等.膜分散微反应器制备γ⁃氧化铝千克级放大试验[J].中国粉体技术,2021,27(1):22⁃31. |
WAN L S,LI F,ZHAO S Y,et al.Kilogram⁃scale magnification test for preparation of γ⁃Al2O3 in membrane dispersion microreactor[J].China Powder Science and Technology,2021,27(1):22⁃31. | |
52 | BELL T E,GONZÁLEZ⁃CARBALLO J M,TOOZE R P,et al.Single⁃step synthesis of nanostructured γ⁃alumina with solvent reusability to maximise yield and morphological purity[J].Journal of Materials Chemistry A,2015,3(11):6196⁃6201. |
53 | YAMAMURA K,HAMA M,KOBAYASHI Y,et al.Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel[J].Journal of Asian Ceramic Societies,2016,4(3):263⁃268. |
54 | 王晶,张波,徐秀林.水热温度对水合氧化铝相结构及微观形貌的影响[J].有色金属(冶炼部分),2007(5):23⁃26. |
WANG J,ZHANG B,XU X L.Influence of hydrothermal temperature on structural and microstructural properties of boehmite[J].Nonferrous Metals(Extractive Metallurgy),2007(5):23⁃26. | |
55 | 王晶,李媛媛,种丽娟,等.水热时间对中空球形薄水铝石微观结构的影响[J].化工学报,2011,62(7):2075⁃2079. |
WANG J,LI Y Y,CHONG L J,et al.Effect of hydrothermal treatment time on microstructure of hollow sphere boehmite[J].CIESC Journal,2011,62(7):2075⁃2079. | |
56 | SALEM S,SALEM A,PARNI M H,et al.Microwave⁃assisted pyrolysis of organometallic gel prepared through ternary combination of surfactants for fabrication of nano⁃porous gamma alumina:Adsorptive properties,characterization[J].Journal of Chemical Technology and Biotechnology,2021,96(5):1187⁃1196. |
57 | HE T B,XIANG L,ZHU S L.Different nanostructures of boehmite fabricated by hydrothermal process:Effects of pH and anions[J].CrystEngComm,2009,11(7):1338⁃1342. |
58 | 李冬云,杨辉,葛洪良,等.加水方式对溶胶⁃凝胶法制备纳米氧化铝粉体形貌的影响[J].稀有金属材料与工程,2010,39(S2):490⁃492. |
LI D Y,YANG H,GE H L,et al.Effect of the way of water addition on the morphology of nano⁃sized Al2O3 powders prepared by sol⁃gel method[J]. Rare Metal Materials and Engineering,2010,39(S2):490⁃492. | |
59 | 晁念杰,李博,李长明,等.丙烷催化脱氢制丙烯工艺及催化剂的研究进展[J].当代化工,2019,48(8):1806⁃1810. |
CHAO N J,LI B,LI C M,et al.Research progress in processes and catalysts for catalytic dehydrogenation of propane to propylene[J].Contemporary Chemical Industry,2019,48(8):1806⁃1810. | |
60 | 朱慧红,茆志伟,杨涛,等.催化剂形貌对沸腾床渣油加氢Ni⁃Mo/Al2O3催化剂活性位的影响机制[J].化工学报,2021,72(4):2076⁃2085. |
ZHU H H,MAO Z W,YANG T,et al.Influence mechanism of catalyst morphology on the active sites of Ni⁃Mo/Al2O3 catalyst for ebullated bed residue hydrogenation[J].CIESC Journal,2021,72(4):2076⁃2085. | |
61 | DENG L D,MIURA H,SHISHIDO T,et al.Strong metal⁃support interaction between Pt and SiO2 following high⁃temperature reduction:A catalytic interface for propane dehydrogenation[J].Chemical Communications,2017,53(51): 6937⁃6940. |
62 | GONG N,ZHAO Z K.Efficient supported Pt⁃Sn catalyst on carambola⁃like alumina for direct dehydrogenation of propane to propene[J].Molecular Catalysis,2019,477:110543. |
63 | ZHANG H X,ZHANG Y W,ZHOU Y M,et al.Morphology⁃controlled fabrication of biomorphic alumina⁃based hierarchical LDH compounds for propane dehydrogenation reaction[J].New Journal of Chemistry,2018,42(1):103⁃110. |
64 | ZHANG Y W,ZHOU Y M,SHI J J,et al.Comparative study of bimetallic Pt⁃Sn catalysts supported on different supports for propane dehydrogenation[J].Journal of Molecular Catalysis A:Chemical, 2014, 381:138⁃147. |
65 | MARTÍNEZ A,PRIETO G,ROLLÁN J.Nanofibrous γ⁃Al2O3 as support for Co⁃based Fischer⁃Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance[J].Journal of Catalysis,2009,263(2): 292⁃305. |
66 | FENG H,WANG H,MA Z J,et al.Quantification of surface orientation effect on the thermal stability of γ⁃Al2O3 with different morphologies[J].Applied Surface Science,2022,594:153509. |
67 | DIGNE M,SAUTET P,RAYBAUD P,et al.Use of DFT to achieve a rational understanding of acid⁃basic properties of |
γ⁃alumina surfaces[J].Journal of Catalysis,2004,226(1):54⁃68. | |
68 | SHEN D Y,HUO M M,LI L,et al.Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts[J]. Catalysis Science & Technology,2020,10(2):510⁃516. |
69 | 李勇,申文杰.金属氧化物纳米催化的形貌效应[J].中国科学:化学,2012,42(4):376⁃389. |
LI Y,SHEN W J.Morphology effect of metal oxide nanocatalysis[J].Science China Chemistry,2012,42(4):376⁃389. | |
70 | 谢继阳,王红琴,安霓虹,等.丙烷脱氢制丙烯中铂基催化剂研究进展[J].贵金属,2020,41(1):70⁃76. |
XIE J Y,WANG H Q,AN N H,et al.Research progress in Pt⁃based catalysts for propane dehydrogenation to propylene[J]. Precious Metals,2020,41(1):70⁃76. | |
71 | NAWAZ Z.Light alkane dehydrogenation to light olefin technologies:A comprehensive review[J].Reviews in Chemical Engineering,2015,31(5):413⁃436. |
72 | PHAM H N,SATTLER J J H B,WECKHUYSEN B M,et al.Role of Sn in the regeneration of Pt/γ⁃Al2O3 light alkane dehydrogenation catalysts[J].ACS Catalysis,2016,6(4):2257⁃2264. |
73 | 高新芊,陆文多,户守昭,等.棒状多孔氧化铝负载氧化铬催化丙烷脱氢反应性能[J].催化学报,2019,40(2):184⁃191. |
GAO X Q,LU W D,HU S Z,et al. Rod⁃shaped porous alumina⁃supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J].Chinese Journal of Catalysis,2019,40(2):184⁃191. | |
74 | 王希涛,杨功兵,王康,等.Sn杂化氧化铝球的制备及其在丙烷脱氢中的应用[J].天津大学学报,2019,52(1):20⁃25. |
WANG X T,YANG G B,WANG K,et al.Preparation of Sn⁃doped spherical alumina and its application on propane dehydrogenation[J].Journal of Tianjin University,2019,52(1):20⁃25. |
[1] | 祝凯, 杨兰, 刘瑞娟, 安晓强. 非均相臭氧催化剂及其在工业废水处理中的应用与进展[J]. 石油化工高等学校学报, 2024, 37(5): 1-10. |
[2] | 赵明明, 娄洺源, 朴茜琳, 迟昊天, 张海娟. 助剂Ga对Pt基催化剂脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(5): 46-55. |
[3] | 韩飞飞, 焦建豪, 田祥臣, 杨野, 秦玉才, 宋丽娟. Sn引入方式对Al2O3负载Pt基催化剂丙烷脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(4): 49-56. |
[4] | 唐伟建, 王钰佳, 孙娜, 王海彦. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24. |
[5] | 王焕, 熊晓云, 郑云锋, 孙祥博, 关慧敏, 李强, 宋丽娟. FCC催化剂传质性能与孔结构和酸性的关联性探究[J]. 石油化工高等学校学报, 2024, 37(3): 58-65. |
[6] | 李声笛, 肖海成, 吴志杰. 费托合成Co基催化剂的研究进展[J]. 石油化工高等学校学报, 2024, 37(1): 34-42. |
[7] | 黄旭君, 宋永一, 于洋, 丁巍, 张舒冬, 蔡海乐, 马锐. 石油焦应用及脱硫技术进展[J]. 石油化工高等学校学报, 2023, 36(5): 15-23. |
[8] | 张景威, 惠宇, 杨野, 李强, 秦玉才, 宋丽娟, 李晟闻. B⁃MFI分子筛可控合成及丁烯双键异构化应用[J]. 石油化工高等学校学报, 2023, 36(5): 31-37. |
[9] | 陈晓雨, 王春蓉, 孙京, 王景芸, 陈阳, 周明东. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44. |
[10] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[11] | 刘嘉敏, 越婷婷, 常迎, 郭少红, 贾晶春, 贾美林. CO2RR稀土基催化剂的研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 1-12. |
[12] | 宋学实, 曲微丽, 赵磊, 王振波. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25-33. |
[13] | 康津铭, 焦建豪, 秦玉才, 杨野, 王焕, 宋丽娟. Pt0.5⁃Snx/γ⁃Al2O3催化剂对丙烷脱氢反应性能的影响[J]. 石油化工高等学校学报, 2023, 36(4): 34-39. |
[14] | 李愉景, 王贺, 陈阳, 李蕾. Co⁃NC⁃900催化氧化烯烃C=C断裂合成酯[J]. 石油化工高等学校学报, 2023, 36(4): 40-46. |
[15] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发