石油化工高等学校学报 ›› 2023, Vol. 36 ›› Issue (4): 1-12.DOI: 10.12422/j.issn.1006-396X.2023.04.001
刘嘉敏(), 越婷婷, 常迎, 郭少红, 贾晶春(), 贾美林
收稿日期:
2022-09-05
修回日期:
2022-12-05
出版日期:
2023-08-25
发布日期:
2023-09-05
通讯作者:
贾晶春
作者简介:
刘嘉敏(1997⁃),女,硕士研究生,从事电化学方面的研究;E⁃mail:1670881314@qq.com。
基金资助:
Jiamin Liu(), Tingting Yue, Ying Chang, Shaohong Guo, Jingchun Jia(), Meilin Jia
Received:
2022-09-05
Revised:
2022-12-05
Published:
2023-08-25
Online:
2023-09-05
Contact:
Jingchun Jia
摘要:
化石燃料的大规模使用导致CO2过度排放,造成气温升高、冰川融化、病虫害加剧等一系列问题。通过电化学还原CO2(CO2RR)将CO2转化为有价值的化学品和燃料,已成为实现碳循环的一种途径。多年来,已将金属及其氧化物、碳基材料、单原子催化剂等不同电催化剂用于CO2RR并取得了一定的进展,但作为“工业维生素”的稀土元素用于CO2RR的报道较少。综述了稀土元素作为载体、主催化剂、助催化剂用于CO2RR的情况,探究了稀土元素材料在CO2RR中的催化性能,以期促进对工业应用的研究。
中图分类号:
刘嘉敏, 越婷婷, 常迎, 郭少红, 贾晶春, 贾美林. CO2RR稀土基催化剂的研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 1-12.
Jiamin Liu, Tingting Yue, Ying Chang, Shaohong Guo, Jingchun Jia, Meilin Jia. Research Progress on Rare Earth⁃Based Catalysts for CO2 Reduction Reaction(CO2RR)[J]. Journal of Petrochemical Universities, 2023, 36(4): 1-12.
半反应 | 电极电位(vs.RHE)/V |
---|---|
-0.53 | |
-0.61 | |
-0.24 | |
0.06 | |
-0.38 | |
0.08 |
表1 标准实验条件下CO2RR半反应的电极电位[25?26]
Table 1 Electrode potential of CO2RR half reaction under standard experimental conditions[25?26]
半反应 | 电极电位(vs.RHE)/V |
---|---|
-0.53 | |
-0.61 | |
-0.24 | |
0.06 | |
-0.38 | |
0.08 |
图4 CeO2保护Cu2+的自牺牲方案和在CO2RR过程中的变化[68](a) CeO2保护Cu2+的自牺牲方案 (b) 经过CO2RR后Cu?Ce?O x 和CuO/CeO2的CV图
Fig.4 CeO2 protects Cu2+ from Self sacrifice schemex and its changes in the process of CO2RR[68]
图5 CeO x /Au(111)与CO2之间的相互作用和Cu/ CeO2还原CO2的DFT计算[72?73]
Fig.5 Interaction between CeO x /Au (111) and CO2 and DFT calculation of Cu/CeO2 reducing CO2[72?73]
图6 Ag/CeO2 和Au?CeO2?DP加速CO2RR的机理[74?75](a) Ag/CeO2界面用于CO2RR (b) Au?CeO2?DP上生成Auδ+的机制
Fig.6 Mechanism of Ag/CeO2 interface and Au?CeO2?DP accelerating CO2RR[74?75]
1 | Samuel A,Christian N.Reducing carbon dioxide emissions;Does renewable energy matter?[J].Science of the Total Environment,2019,693:133288. |
2 | Bali H,Mutyala S,Efremova A,et al.Role of active metals Cu,Co,and Ni on ceria towards CO2 thermo⁃catalytic hydrogenation[J].Reaction Kinetics Mechanisms and Catalysis,2021,133(2):699⁃711. |
3 | Doherty F,Wang H,Yang M,et al.Nanocluster and single⁃atom catalysts for thermocatalytic conversion of CO and CO2[J]. Catalysis Science & Technology,2020,10(17):5772⁃5791. |
4 | Koshy D M,Nathan S S,Asundi A S,et al.Bridging thermal catalysis and electrocatalysis:Catalyzing CO2 conversion with carbon⁃based materials[J].Angewandte Chemie,2021,60(32):17472⁃17480. |
5 | Rambabu Y,Kumar U,Singhal N,et al.Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes[J].Applied Surface Science,2019,485:48⁃55. |
6 | Muringa K M,Rajeev K A,Ankaralingam M.Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide[J]. Sustainable Energy & Fuels,2021,5(1):12⁃33. |
7 | Lingampalli S R,Ayyub M M,Rao C N R.Recent progress in the photocatalytic reduction of carbon dioxide[J].ACS Omega,2017,2(6):2740⁃2748. |
8 | Maximilian M,Andrea M,Anke S,et al.Addressingthe reproducibility of photocatalytic carbon dioxide reduction[J]. ChemCatChem,2020,12(6):1603⁃1608. |
9 | Xiong Y,Dong J C,Huang Z Q,et al.Single⁃atom Rh/N⁃doped carbon electrocatalyst for formic acid oxidation[J].Nature Nanotechnology,2020,15(5):390⁃397. |
10 | Beniya A,Higashi S,Ohba N,et al.CO oxidation activity of non⁃reducible oxide⁃supported mass⁃selected few⁃atom Pt single⁃clusters[J]. Nature Communication,2020,11(1):1888. |
11 | Liu J Z,Wang Y T,Jiang H B,et al.Ag@Au core⁃shell nanowires for nearly 100 % CO2⁃to⁃CO electroreduction[J]. Chemistry⁃An Asian Journal,2020,15(3):425⁃431. |
12 | Prabhu P,Jose V,Lee J M.Design strategies for development of TMD⁃based heterostructures in electrochemical energy systems[J].Matter,2020,2(3):526⁃530. |
13 | Fu G T,Lee J M.Ternary metal sulfides for electrocatalytic energy conversion[J].Journal of Materials Chemistry A,2019,7:9386⁃9405. |
14 | Wang H,Lee J M.Recent advances in structural engineering of MXene electrocatalysts[J].Journal of Materials Chemistry A,2020,8:10604⁃10624. |
15 | Zheng Y L,Cheng P,Xu J S,et al.MOF⁃derived nitrogen⁃doped nanoporous carbon for electroreduction of CO2 to CO:The calcining temperature effect and the mechanism[J].Nanoscale,2019,11(11):4911⁃4917. |
16 | Wu H B,Lou X W.Metal⁃organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J].Science Advances,2017,3(12):eaap9252. |
17 | Wang H J,Liu G Y,Wu S Y,et al.Bimetallic MOF derived nickel nanoclusters supported by nitrogen⁃doped carbon for efficient electrocatalytic CO2 reduction[J].Nano Research,2022,16(4):4546⁃4553. |
18 | Vasileff A,Zheng Y,Qiao S Z.Carbon solving carbon's problems:Recent progress of nanostructured carbon⁃based catalysts for the electrochemical reduction of CO2[J].Advanced Energy Materials,2017,7(21):1700759. |
19 | Xia P F,Antonietti M,Zhu B C,et al.Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase[J].Advanced Functional Materials,2019,29(15):1900093. |
20 | Cui X Q,Pan Z Y,Zhang L J,et al.Selective etching of nitrogen⁃doped carbon by steam for enhanced electrochemical CO2 reduction[J].Advanced Energy Materials,2017,7(22):1701456. |
21 | Li G D,Qin Y J,Wu Y,et al.Nitrogen and sulfur dual⁃doped high⁃surface⁃area hollow carbon nanospheres for efficient CO2 reduction[J].Chinese Journal of Catalysis,2020,41(5):830⁃838. |
22 | Chen P,Lei B,Dong X A,et al.Rare⁃earth single⁃atom La⁃N charge⁃transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction[J]. ACS Nano,2020,14(11):15841⁃15842. |
23 | Sheng W C,Kattel S,Yao S Y,et al.Electrochemical reduction of CO2 to synthesisgas with controlled CO/H2 ratios[J].Energy & Environmental Science,2017,10(1):1180⁃1185. |
24 | Yang J R,Li W H,Tan S D,et al.The electronic metal⁃support interaction directing the design of single atomic site catalysts:Achieving high efficiency towards hydrogen evolution[J].Angewandte Chemie,2021,60(35):19085⁃19091. |
25 | Lu S,Lou F L,Yu Z X.Recent progress in two⁃dimensional materials for electrocatalytic CO2 reduction[J].Catalysts,2022,12(2):228. |
26 | Zhang W Z,Hu L,Ma L B,et al.Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J].Advanced Science,2018,5(2):1700275. |
27 | Ma W C,He X Y,Wang W,et al.Electrocatalytic reduction of CO2 and CO to multi⁃carbon compounds over Cu⁃based catalysts[J].Chem Soc Rev,2021,50(23),12897⁃12914. |
28 | Zhang Y,Dong L Z,Li S,et al.Coordination environment dependent selectivity of single⁃site⁃Cu enriched crystalline porous catalysts in CO2 reduction to CH4[J].Nature Communications,2021,12(1):1⁃9. |
29 | Zhao K,Liu Y M,Quan X,et al.CO2 electroreduction at low overpotential on oxide⁃derived Cu/carbons fabricated from metal organic framework[J].ACS Applied Materials Interfaces,2017,9(6):5302⁃5311. |
30 | Daiyan R,Saputera W H,Masood H,et al.A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value‐added chemicals and fuel[J].Advanced Energy Materials,2020,10(11):1902106. |
31 | Ao C C,Feng B B,Qian S Y,et al.Theoretical study of transition metals supported on g⁃C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4[J].Journal of CO2 Utilization,2020,36:116⁃123. |
32 | Shin D Y,Won J S,Kwon J A,et al.First⁃principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4[J].Computational and Theoretical Chemistry,2017,1120:84⁃90. |
33 | Nam D H,De L P,Rosas H A,et al.Molecular enhancement of heterogeneous CO2 reduction[J].Nature Materials,2020,19(3):266⁃276. |
34 | Yang R O,Duan J Y,Dong P P,et al.In situ halogen⁃ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products[J].Angewandte Chemie,2022,61(21):1⁃8. |
35 | Chu S,Ou P F,Ghamari P,et al.Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface[J].Journal of the American Chemical Society,2018,140(25):7869⁃7877. |
36 | 秦晓伟.氮掺杂碳材料催化剂制备及其催化CH4⁃CO2重整制合成气[D].太原:太原理工大学,2021. |
37 | 华亚妮,冯少广,党欣悦,等.CO2电催化还原产合成气研究进展[J].化工进展,2022,41(3):1224⁃1240. |
Hua Y N,Feng S G,Dang X Y,et al.Research progress of CO2 electrocatalytic reduction to syngas[J].Chemical Industry and Engineering Progress,2022,41(3):1224⁃1240. | |
38 | Daiyan R,Chen R,Kumar P,et al.Tunable syngas production through CO2 electroreduction on cobalt⁃carbon composite electrocatalyst[J].ACS Applied Materials Interfaces,2020,12(8):9307⁃9315. |
39 | Zheng B Z,Fan J Y,Chen B,et al.Rare⁃earth doping in nanostructured inorganic materials[J].Chemical Reviews,2022,122(6):5519⁃5603. |
40 | Chen L F,Sagar R U R,Aslam S,et al.Neodymium⁃decorated graphene as an efficient electrocatalyst for hydrogen production[J].Nanoscale,2021,13(36):15471. |
41 | Yang C H,Nosheen F,Zhang Z C.Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction[J].Rare Metals,2020,40:1412⁃1430. |
42 | Zhao Z Y, Li X T,Wang J H,et al.CeO2⁃modified Cu electrode for efficient CO2 electroreduction to multi⁃carbon products[J].Journal of CO2 Utilization,2021,54:101741. |
43 | Liang Q,Zhao Y,Chen J D,et al.Interfacial electron delocalization in engineering nanosized anti⁃perovskite nitride for efficient CO2 electroreduction[J].Chemistry of Materials,2022,34(12):5607⁃5620. |
44 | Han S G,Ma D D,Zhu Q L.Atomically structural regulations of carbon⁃based single⁃atom catalysts for electrochemical CO2 reduction[J].Small Methods,2021,5(8):e2100102. |
45 | Wang J J,Li X P,Cui B F,et al.A review of non⁃noble metal⁃based electrocatalysts for CO2 electroreduction[J].Rare Metals,2021,40(11):3019⁃3037. |
46 | Chu M,Chen C J,Wu Y H,et al.Enhanced CO2 electroreduction to ethylene via strong metal⁃support interaction[J].Green Energy & Environment,2020,7(4):792⁃798. |
47 | Yang J,Qiu Z Y,Zhao C M,et al.In situ thermal atomization to convert supported nickel nanoparticles into surface⁃bound nickel single⁃atom catalysts[J].Angewandte Chemie,2018,130(43):14291⁃14296. |
48 | He C Z, Yang H Y,Fu X,et al.A DFT study of two⁃dimensional P2Si monolayer modified by single transition metal (Sc⁃Cu) atoms for efficient electrocatalytic CO2 reduction[J].Chinese Chemical Letters,2023,34(5):107579. |
49 | Wang X,Tang Y W,Lee J M,et al.Recent advances in rare⁃earth⁃based materials for electrocatalysis[J].Chem Catalysis,2022,2(5):967⁃1008. |
50 | Chen B W J,Xu L,Mavrikakis M,et al.Computational methods in heterogeneous catalysis[J].Chemical Reviews,2021,121(2):1007⁃1048. |
51 | Fan C,Wu X D,Li M,et al.Surface chemical reconstruction of hierarchical hollow inverse⁃spinel manganese cobalt oxide boosting oxygen evolution reaction[J].Chemical Engineering Journal,2022,431:133829. |
52 | Liu H L,Zhu Y T,Ma J M,et al.Recent advances in atomic⁃level engineering of nanostructured catalysts for electrochemical CO2 reduction[J].Advanced Functional Materials,2020,30(17):1910534. |
53 | Leverett J,Daiyan R,Gong L,et al.Designing undercoordinated Ni⁃Nx and Fe⁃Nx on holey graphene for electrochemical CO2 conversion to syngas[J].ACS Nano,2021,15(7):12006⁃12018. |
54 | Alexander B,Wen J,Sofia V A,et al.Single site porphyrine⁃like structures advantages over metals for selective electrochemical CO2 reduction[J].Catalysis Today,2017,288:74⁃78. |
55 | Concas G,Dewhurst J K,Sanna A,et al.Massidda, anisotropic exchange interaction between nonmagnetic europium cations in Eu2O3[J].Physical Review B,2011,84(1):014427. |
56 | Liu J Y,Kong X,Zheng L R,et al.Rare earth single⁃atom catalysts for nitrogen and carbon dioxide reduction[J].ACS Nano,2020,14(1):1093⁃1101. |
57 | Hu F Z,Liao L L,Chi B Z,et al.Rare earth praseodymium⁃based single atom catalyst for high performance CO2 reduction reaction[J].Chemical Engineering Journal,2022,436:135271. |
58 | Gawish M A,Drmosh Q A,Onaizi S A.Single atom catalysts: An overview of the coordination and interactions with metallic supports[J].Chemical Record,2022,22(7):e202100328. |
59 | Feng J,Zhang X L,Wang J M,et al.Applications of rare earth oxides in catalytic ammonia synthesis and decomposition[J]. Catalysis Science & Technology,2021,11(19):6330⁃6343. |
60 | 王艳杰,刘瑞,吕广明,等.纳米CeO2的催化基础及应用研究进展[J].中国稀土学报,2014,32(3):257⁃269. |
Wang Y J,Liu R,Lv G M,et al.Ceria nanostuctures and their catalytic applications[J].Journal of the Chinese Society of Rare Earths,2014,32(3):257⁃269. | |
61 | Nolan M,Parker S C,Watson G W.The electronic structure of oxygen vacancy defects at the low index surfaces of ceria[J]. Surface Science,2005,595(1):223⁃232. |
62 | Geng Z G,Kong X D,Chen W W,et al.Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO[J].Angewandte Chemie,2018,57(21):6054⁃6059. |
63 | 袁堃,张亚文.纳米氧化铈的缺陷化学及其在多相催化中作用的研究进展[J].中国稀土学报, 2020, 38(3):326⁃344. |
Yuan K,Zhang Y W. Defect chemistry of ceria nanostructures and their applications in heterogeneous catalysis[J].Journal of the Chinese Society of Rare Earths,2020,38(3):326⁃344. | |
64 | Jiang F,Wang S S,Liu B,et al.Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis,2020,10(19):11493⁃11509. |
65 | 楚森林,李欣,Robertson A W,等.CeO2担载Cu纳米粒子电催化CO2还原产乙烯:CeO2不同暴露晶面对催化性能的影响[J].物理化学学报,2021,37(5):201⁃208. |
Chu S L,Li X,Robertson A W,et al.Electrocatalytic CO2 reduction to ethylene over CeO2⁃supported Cu nanoparticles: | |
Effect of exposed facets of CeO2[J].Acta Physico⁃Chimica Sinica,2021,37(5):201⁃208. | |
66 | Duan Y X,Zhou Y T,Yu Z,et al.Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx[J].Angewandte Chemie,2021,133(16):8880⁃8884. |
67 | Ning S L,Guo Z W,Wang J G,et al.Sn⁃doped CeO2 nanorods as high⁃performance electrocatalysts for CO2 reduction to formate[J].ChemElectroChem,2021,8(14):2680⁃2685. |
68 | Zhou X L, Shan J Q, Chen L,et al.Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane[J].Journal of the American Chemical Society,2022,144(5):2079⁃2084. |
69 | Song L P,Liang Z,Sun M Z,et al.Interfacial effect induced by rare earth oxide in boosting conversion of CO2 to formate[J]. Energy & Environmental Science,2022,15(8):3494⁃3502 |
70 | Varandili S B,Huang J F,Oveisi E,et al.Synthesis of Cu/CeO2- x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction[J].ACS Catalysis,2019,9(6):5035⁃5046. |
71 | Zong X,Zhang J,Zhang J Q,et al.Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction[J]. Electrochemistry Communications,2020,114:106716. |
72 | Gao D F, Zhang Y, Zhou Z W, et al.Enhancing CO2 electroreduction with the metal⁃oxide interface[J].Journal of the American Chemical Society,2017,139(16):5652⁃5655. |
73 | Lee C W,Shin S J,Jung H,et al. Metal⁃oxide interfaces for selective electrochemical C—C coupling reactions[J].ACS Energy Letters,2019,4(9):2241⁃2248. |
74 | Sun Z S,Wu X H,Guan D Q,et al.One pot⁃synthesized Ag/Ag⁃doped CeO2 nanocomposite with rich and stable 3D interfaces and Ce3+ for efficient carbon dioxide electroreduction[J].ACS Applied Materials Interfaces,2021,13(50):59993⁃60001. |
75 | Sun X C,Yuan K,Zhou J H,et al.Au3+ Species⁃induced interfacial activation enhances metal⁃support interactions for boosting electrocatalytic CO2 reduction to CO[J].ACS Applied Materials Interfaces,2021,12(2):923⁃934. |
76 | Zhang B,Zheng X L,Voznyy O,et al. Homogeneously dispersed multimetal oxygen⁃evolving catalysts[J].Science,2016,352:333⁃337. |
77 | Minasian S G,Batista E R,Booth C H,et al.Quantitative evidence for lanthanide⁃oxygen orbital mixing in CeO2,PrO2, and TbO2[J].Journal of the American Chemical Society,2017,139(49):18052⁃18064. |
78 | Liu W Q,Bai P Y,Wei S L,et al.Lanthanoid Gd engineers local electron densities of Ni 3d orbitals for efficient electrocatalytic CO2 reduction[J].Angewandte Chemie,2022,61(18):202201166. |
79 | Liang Z,Song L P,Sun M Z,et al. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn⁃Ln dual atomic catalysts[J].Science Advances,2021,7(47):l4915. |
[1] | 方萍, 陈康欣, 林雨婷, 范楷浩, 单承宇, 刘雪松. MoO x 状态调控及其对VO x /MoO x ⁃TiO2催化剂脱硝性能和热稳定性的影响[J]. 石油化工高等学校学报, 2024, 37(4): 40-48. |
[2] | 韩飞飞, 焦建豪, 田祥臣, 杨野, 秦玉才, 宋丽娟. Sn引入方式对Al2O3负载Pt基催化剂丙烷脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(4): 49-56. |
[3] | 唐伟建, 王钰佳, 孙娜, 王海彦. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24. |
[4] | 王焕, 熊晓云, 郑云锋, 孙祥博, 关慧敏, 李强, 宋丽娟. FCC催化剂传质性能与孔结构和酸性的关联性探究[J]. 石油化工高等学校学报, 2024, 37(3): 58-65. |
[5] | 刘世佳, 何凯, 毕研峰, 宋丽娟. γ⁃Al2O3载体的形貌调控及其对丙烷脱氢催化剂的影响综述[J]. 石油化工高等学校学报, 2024, 37(2): 31-41. |
[6] | 李声笛, 肖海成, 吴志杰. 费托合成Co基催化剂的研究进展[J]. 石油化工高等学校学报, 2024, 37(1): 34-42. |
[7] | 黄旭君, 宋永一, 于洋, 丁巍, 张舒冬, 蔡海乐, 马锐. 石油焦应用及脱硫技术进展[J]. 石油化工高等学校学报, 2023, 36(5): 15-23. |
[8] | 张景威, 惠宇, 杨野, 李强, 秦玉才, 宋丽娟, 李晟闻. B⁃MFI分子筛可控合成及丁烯双键异构化应用[J]. 石油化工高等学校学报, 2023, 36(5): 31-37. |
[9] | 陈晓雨, 王春蓉, 孙京, 王景芸, 陈阳, 周明东. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44. |
[10] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[11] | 宋学实, 曲微丽, 赵磊, 王振波. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25-33. |
[12] | 康津铭, 焦建豪, 秦玉才, 杨野, 王焕, 宋丽娟. Pt0.5⁃Snx/γ⁃Al2O3催化剂对丙烷脱氢反应性能的影响[J]. 石油化工高等学校学报, 2023, 36(4): 34-39. |
[13] | 李愉景, 王贺, 陈阳, 李蕾. Co⁃NC⁃900催化氧化烯烃C=C断裂合成酯[J]. 石油化工高等学校学报, 2023, 36(4): 40-46. |
[14] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
[15] | 于博, 凌江华, 贾富智, 刘美. 溶剂萃取法分离回收废催化剂碱浸渣中铝、镍的研究[J]. 石油化工高等学校学报, 2023, 36(2): 20-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2021《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发