1 |
FU Y, GUO X Y, XU Z L, et al. Nanostructure⁃mediated phase evolution in lithiation/delithiation of Co3O4[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28171⁃28180.
|
2 |
SHIM H S, SHINDE V R, KIM H J, et al. Porous cobalt oxide thin films from low temperature solution phase synthesis for electrochromic electrode[J]. Thin Solid Films, 2008, 516(23): 8573⁃8578.
|
3 |
SHEN X P, MIAO H J, ZHAO H, et al. Synthesis, characterization and magnetic properties of Co3O4 nanotubes[J]. Applied Physics A, 2008, 91(1): 47⁃51.
|
4 |
PALIWAL M K, KUMAR MEHER S. Sedgelike porous Co3O4 nanoarrays as a novel positive electrode material for Co3O4 || Bi2O3 asymmetric supercapacitors[J]. ACS Applied Nano Materials, 2019, 2(9): 5573⁃5586.
|
5 |
BARKAOUI S, LI Z W, CAO C H, et al. Investigation of catalytic activity of Au/Co3O4 (001) and Au/Co3O4 (111) in the CO oxidation reaction[J]. New Journal of Chemistry, 2024, 48(2): 631⁃639.
|
6 |
JI R, ZHANG M H, MA W, et al. Heterojunction photocatalyst fabricated by deposition Co3O4 nanoparticles on MoS2 nanosheets with enhancing photocatalytic performance and mechanism insight[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 158⁃169.
|
7 |
WU H J, LI C M, CHE H N, et al. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g⁃C3N4 to construct Z⁃scheme system for improving photocatalytic performance[J]. Applied Surface Science, 2018, 440: 308⁃319.
|
8 |
CHEN C D, IKEUCHI Y, XU L F, et al. Synthesis of [111]⁃and {010}⁃faceted anatase TiO2 nanocrystals from tri⁃titanate nanosheets and their photocatalytic and DSSC performances[J]. Nanoscale, 2015, 7(17): 7980⁃7991.
|
9 |
石子兴, 姚懿轩, 丁传敏, 等. In掺杂CeO2催化CO2和甲醇一步合成DMC反应的研究[J]. 低碳化学与化工, 2023, 48(4): 16⁃22.
|
|
SHI Z X, YAO Y X, DING C M, et al. Study on one⁃step synthesis of DMC from CO2 and methanol catalyzed by In doping CeO2[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(4): 16⁃22.
|
10 |
周杰, 包妍, 朱蓓蓓, 等. 石墨相氮化碳的单金属掺杂改性研究进展[J]. 石油化工, 2023, 52(2): 253⁃263.
|
|
ZHOU J, BAO Y, ZHU B B, et al. Research progress on single metal doping modification of graphite⁃like carbon nitride[J]. Petrochemical Technology, 2023, 52(2): 253⁃263.
|
11 |
梁红玉, 李建中, 田彦文, 等. 不同g⁃C3N4/WO3异质结材料的制备及其光催化性能研究[J]. 石油化工高等学校学报, 2018, 31(1): 23⁃29.
|
|
LIANG H Y, LI J Z, TIAN Y W, et al. Different preparation and photocatalytic performance of g⁃C3N4/WO3 heterojunctions[J]. Journal of Petrochemical Universities, 2018, 31(1): 23⁃29.
|
12 |
姬磊, 于瑞敏, 陈丽铎, 等. 复合光催化剂Cu2(OH)PO4/Ni(OH)2的制备及其光催化性能[J]. 东北石油大学学报, 2015, 39(4): 95⁃102.
|
|
JI L, YU R M, CHEN L D, et al. Synthesis of Cu2(OH)PO4/Ni(OH)2 composites and enhanced photocatalytic activities[J]. Journal of Northeast Petroleum University, 2015, 39(4): 95⁃102.
|
13 |
王若瑜, 陈阳阳, 谭集穗, 等. Z型异质结光催化还原CO2研究进展[J]. 石油炼制与化工, 2021, 52(10): 54⁃61.
|
|
WANG R Y, CHEN Y Y, TAN J S, et al. Research progress of Z⁃scheme heterojunction photocatalytic systems for CO2 reduction[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 54⁃61.
|
14 |
ALMENIA S H, ISMAIL A A, ALZAHRANI K A, et al. Li2MnO3 nanoparticles decorated with Co3O4 as functional visible⁃light⁃induced heterojunction photocatalysts for the degradation of tetracycline[J]. Journal of Alloys and Compounds, 2023, 953: 170127.
|
15 |
WANG Y T, ZHU C Z, ZUO G C, et al. 0D/2D Co3O4/TiO2 Z⁃scheme heterojunction for boosted photocatalytic degradation and mechanism investigation[J]. Applied Catalysis B: Environmental, 2020, 278: 119298.
|
16 |
XIONG X S, ZHANG J, CHEN C, et al. Novel n⁃MoSSe/p⁃Co3O4 Z⁃scheme heterojunction photocatalyst for highly boosting photoelectrochemical and photocatalytic activity[J]. Journal of Alloys and Compounds, 2022, 926: 166863.
|
17 |
NALLAPUREDDY R R, PALLAVOLU M R, NALLAPUREDDY J, et al. Z⁃scheme photocatalysis and photoelectrochemical platform with a Co3O4⁃CuO heterogeneous catalyst for the removal of water pollutants and generation of energy[J]. Journal of Cleaner Production, 2023, 382: 135302.
|
18 |
GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Metal⁃free catalysis of sustainable friedel⁃crafts reactions: Direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds[J]. Chemical Communications (Cambridge, England), 2006(43): 4530⁃4532.
|
19 |
亢春, 马会强, 李爽. Fe掺杂g⁃C3N4光催化活化过硫酸钠降解偶氮染料[J]. 辽宁石油化工大学学报, 2022, 42(5): 13⁃17.
|
|
KANG C, MA H Q, LI S. Fe⁃doped g⁃C3N4 photocatalytic activation of persulfate for degradation of azo dyes[J]. Journal of Liaoning Petrochemical University, 2022, 42(5): 13⁃17.
|
20 |
李强, 李晴, 吕扬, 等. 碱金属改性g⁃C3N4及其对氮气吸附影响的理论研究[J]. 辽宁石油化工大学学报, 2018, 38(6): 37⁃42.
|
|
LI Q, LI Q, LÜ Y, et al. Theoretical study of alkali metal modified g⁃C3N4 and its influence on nitrogen adsorption[J]. Journal of Liaoning Shihua University, 2018, 38(6): 37⁃42.
|
21 |
GUO Y, ZHOU Q X, CHEN X L, et al. Near⁃infrared response Pt⁃tipped Au nanorods/g⁃C3N4 realizes photolysis of water to produce hydrogen[J]. Journal of Materials Science & Technology, 2022, 119: 53⁃60.
|
22 |
王海军, 杨延宁, 张富春, 等. S掺杂g⁃C3N4光催化剂的制备及性能研究[J]. 当代化工, 2023, 52(8): 1857⁃1860.
|
|
WANG H J, YANG Y N, ZHANG F C, et al. Study onpreparation and performance of S⁃doped g⁃C3N4 photocatalyst[J]. Contemporary Chemical Industry, 2023, 52(8): 1857⁃1860.
|
23 |
TAHIR M, TAHIR B. Constructing S⁃scheme 2D/0D g⁃C3N4/TiO2 NPs/MPs heterojunction with 2D⁃Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed⁃bed and monolith photoreactors[J]. Journal of Materials Science & Technology, 2022, 106: 195⁃210.
|
24 |
沈拥军, 范凯霞, 陈银, 等. ZnO⁃CeO2/g⁃C3N4三元复合催化剂的制备及其对活性红195的光催化降解性能[J]. 化工环保, 2023, 43(2): 234⁃240.
|
|
SHEN Y J, FAN K X, CHEN Y, et al. Preparation of ZnO/CeO2/g⁃C3N4 ternary composite catalyst and its photocatalytic degradation capability to active red 195[J]. Environmental Protection of Chemical Industry, 2023, 43(2): 234⁃240.
|
25 |
WANG F F, CHEN C D, WANG W, et al. Internal field engineering of WO3 by ion channel migration with enhanced photocatalytic oxygen evolution ability[J]. Journal of Materials Chemistry A, 2021, 9(3): 1678⁃1691.
|
26 |
REN Y H, HAN Q Z, ZHAO Y H, et al. The exploration of metal⁃free catalyst g⁃C3N4 for NO degradation[J]. Journal of Hazardous Materials, 2021, 404(Part A): 124153.
|
27 |
LI C M, ZHU D Q, CHENG S S, et al. Recent research progress of bimetallic phosphides⁃based nanomaterials as cocatalyst for photocatalytic hydrogen evolution[J]. Chinese Chemical Letters, 2022, 33(3): 1141⁃1153.
|
28 |
QIN J C, JIAO Y Y, LIU M Q, et al. Heat treatment to prepare boron doped g⁃C3N4 nanodots/carbon⁃rich g⁃C3N4 nanosheets heterojunction with enhanced photocatalytic performance for water splitting hydrogen evolution[J]. Journal of Alloys and Compounds, 2022, 898: 162846.
|
29 |
KAMAL H M, SABBAH A, QORBANI M, et al. Metal⁃free four⁃in⁃one modification of g⁃C3N4 for superior photocatalytic CO2 reduction and H2 evolution[J]. Chemical Engineering Journal, 2022, 430(Part 2): 132853.
|
30 |
ZHANG X, ZHANG R X, YANG P, et al. Black magnetic Cu⁃g⁃C3N4 nanosheets towards efficient photocatalytic H2 generation and CO2/benzene conversion[J]. Chemical Engineering Journal, 2022, 450(Part 2): 138030.
|
31 |
NI T J, ZHANG H, YANG Z B, et al. Enhanced adsorption and catalytic degradation of antibiotics by porous 0D/3D Co3O4/g⁃C3N4 activated peroxymonosulfate: An experimental and mechanistic study[J]. Journal of Colloid and Interface Science, 2022, 625: 466⁃478.
|
32 |
SHAO H X, ZHAO X, WANG Y B, et al. Synergetic activation of peroxymonosulfate by Co3O4 modified g⁃C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 218: 810⁃818.
|
33 |
周志凌, 叶仲斌, 路俊刚, 等. 用于油田污水处理的纳米TiO2光催化剂的初步研究[J]. 油田化学, 2006, 23(4): 321⁃324.
|
|
ZHOU Z L, YE Z B, LU J G, et al. A preliminary study on preparation of nanometric TiO2 photocatalyst for treating oilfield wastewater[J]. Oilfield Chemistry, 2006, 23(4): 321⁃324.
|
34 |
GUO Y, DAI Y X, ZHAO W, et al. Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus⁃leaf⁃like nanosheets structure[J]. Applied Catalysis B: Environmental, 2018, 237: 273⁃287.
|
35 |
马克伟, 朱琳娜, 孙丽霞, 等. MOF模板法制备Co3O4及其光催化降解罗丹明B[J]. 水处理技术, 2020, 46(9): 58⁃62.
|
|
MA K W, ZHU L N, SUN L X, et al. MOF⁃templated synthesis of Co3O4 material and photocatalytic degradation of rhodamine B[J]. Technology of Water Treatment, 2020, 46(9): 58⁃62.
|
36 |
HUANG Z F, ZHAO Y, XU H T, et al. Surfactant⁃free synthesis, photocatalytic and electrochemical property study of Co3O4 nanoparticles[J]. Materials Research Bulletin, 2018, 100: 83⁃90.
|
37 |
ZHAO X X, LIU Y Q, GUO J F, et al. NCQDs active sites as effective collectors of charge carriers towards enhanced photocatalytic activity of porous Co3O4[J]. Environmental Technology, 2022, 45(7): 1412⁃1429.
|
38 |
HUSSAIN M K, KHALID N R, TANVEER M, et al. In⁃situ fabrication of MoO3 hexagonal flowers decorated with Co3O4 microrods with enhanced photocatalytic activity and stability under visible light irradiation[J]. Materials Chemistry and Physics, 2023, 302: 127652.
|
39 |
JIANG J J, WANG X Y, ZHANG C J, et al. Porous 0D/3D NiCo2O4/g⁃C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment[J]. Chemical Engineering Journal, 2020, 397: 125356.
|
40 |
WANG F F, YANG Z M, YANG Z X, et al. Graphene triggered hole activation strategy for 2D/2D⁃layered (001)/(100)WO3 facet junction towards enhanced photocatalytic water oxidation kinetics[J]. Chemical Engineering Journal, 2022, 450(Part 2): 138166.
|
41 |
DUAN Y Y, WANG Y, ZHANG W X, et al. Simultaneous CO2 and H2O activation via integrated Cu single atom and N vacancy dual⁃site for enhanced CO photo⁃production[J]. Advanced Functional Materials, 2023, 33(28): 2301729.
|
42 |
ZHAO Z W, FAN J Y, DENG X Y, et al. One⁃step synthesis of phosphorus⁃doped g⁃C3N4/Co3O4 quantum dots from vitamin B12 with enhanced visible⁃light photocatalytic activity for metronidazole degradation[J]. Chemical Engineering Journal, 2019, 360: 1517⁃1529.
|
43 |
SHEN S L, ZHANG Y J, LIU Y S, et al. Manganese⁃doped Ag2S⁃ZnS heteronanostructures[J]. Chemistry of Materials, 2012, 24(12): 2407⁃2413.
|
44 |
YANG Z M, KANG M L, CHEN L, et al. Interfacial engineering over tungsten oxide by constructing Z⁃scheme interatomic junction for efficient photocatalytic tetrachlorophenol degradation[J]. Applied Surface Science, 2023, 609: 155306.
|
45 |
TANG C N, LIU E Z, WAN J, et al. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible⁃light⁃driven heterojunction photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 181: 707⁃715.
|
46 |
WANG F L, WANG Y F, FENG Y P, et al. Novel ternary photocatalyst of single atom⁃dispersed silver and carbon quantum dots co⁃loaded with ultrathin g⁃C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510⁃520.
|