石油化工高等学校学报 ›› 2024, Vol. 37 ›› Issue (4): 1-11.DOI: 10.12422/j.issn.1006-396X.2024.04.001
王嘉曼1(), 熊靖1, 师金鸽2, 韦岳长1(), 霍开玲2
收稿日期:
2024-06-04
修回日期:
2024-06-20
出版日期:
2024-08-25
发布日期:
2024-08-07
通讯作者:
韦岳长
作者简介:
王嘉曼(2001⁃),女,硕士研究生,从事光催化二氧化碳还原方面的研究;E⁃mail:wjmcup@163.com。
基金资助:
Jiaman WANG1(), Jing XIONG1, Jinge SHI2, Yuechang WEI1(), Kailing HUO2
Received:
2024-06-04
Revised:
2024-06-20
Published:
2024-08-25
Online:
2024-08-07
Contact:
Yuechang WEI
摘要:
碳排放量的不断增加导致环境问题日益严重,寻找解决途径已成为全球共同关注的焦点。通过光催化、电催化还原CO2可以将其转化为有用的燃料或化学品。TiO2因具有化学性质稳定、催化活性高、价格低廉、无毒无污染等优点而备受青睐。综述了光催化CO2还原和电催化CO2还原的反应机理;阐述了TiO2在光催化和电催化还原CO2中的应用和优势、不同表面改性技术对TiO2的催化性能的影响以及TiO2的形貌对CO2还原催化活性和选择性的影响;对TiO2基催化剂催化性能的提升方法进行了讨论。综述为可持续碳转化提供科学基础,并有助于进一步实验和理论探索TiO2的作用机理。
中图分类号:
王嘉曼, 熊靖, 师金鸽, 韦岳长, 霍开玲. TiO2催化剂催化CO2还原的研究进展[J]. 石油化工高等学校学报, 2024, 37(4): 1-11.
Jiaman WANG, Jing XIONG, Jinge SHI, Yuechang WEI, Kailing HUO. An Overview of Carbon Dioxide Catalyzed by Titanium Dioxide Catalyst[J]. Journal of Petrochemical Universities, 2024, 37(4): 1-11.
还原反应 | E(vs.SHE)/V |
---|---|
CO2 + e- → CO2- | -1.90 |
CO2 + 2 H+ + 2e- → HCOOH | -0.61 |
CO2 + H2O + 2e- → COOH- | -0.44 |
CO2 + 2 H+ + 2e- → CO + H2O | -0.52 |
2CO2 + 12 H+ + 12e- → C2H4 + 4H2O | -0.34 |
CO2 + 4 H+ + 4e- → HCHO + H2O | -0.51 |
CO2 + 6 H+ + 6e- → CH3OH + H2O | -0.38 |
CO2 + 8 H+ + 8e- → CH4 + 2H2O | -0.24 |
2 H+ + 2e- → H2 | -0.42 |
表1 在压力为1.01×105 Pa、温度为25 ℃的液相中还原CO2的标准电位
Table 1 Liquid phase with pressure of 1.01×105 Pa and temperature of 25 ℃ standard potential for reducing CO2
还原反应 | E(vs.SHE)/V |
---|---|
CO2 + e- → CO2- | -1.90 |
CO2 + 2 H+ + 2e- → HCOOH | -0.61 |
CO2 + H2O + 2e- → COOH- | -0.44 |
CO2 + 2 H+ + 2e- → CO + H2O | -0.52 |
2CO2 + 12 H+ + 12e- → C2H4 + 4H2O | -0.34 |
CO2 + 4 H+ + 4e- → HCHO + H2O | -0.51 |
CO2 + 6 H+ + 6e- → CH3OH + H2O | -0.38 |
CO2 + 8 H+ + 8e- → CH4 + 2H2O | -0.24 |
2 H+ + 2e- → H2 | -0.42 |
图1 半导体光催化还原CO2的步骤及反应机理示意图[10](a) 还原CO2的步骤 (b) 反应机理
Fig.1 Schematic diagram of steps and reaction mechanism of semiconductor photocatalytic reduction for CO2[10]
图5 ZnPy4?Mn/TiO2光催化剂催化CO2和H2O转化为CH4和CO的机理[21]
Fig.5 Mechanism of ZnPy4?Mn/TiO2 photocatalyst catalyzing the conversion of CO2 and H2O to methane and carbon monoxide[21]
催化剂 | 产品产率/(µmol·g-1·h-1) | 参考文献 |
---|---|---|
Cs2CuBr4/TiO2 | 272.38(CO),87.62(CH4) | [ |
Ag/Cu⁃Cu2O⁃TiO2 | 62.50(CH4) | [ |
Cu2O QDs/TiO2 NTs | 0.10(CO),2.93(CH4) | [ |
Ni x /TiO2⁃OV | 22.65(CO),3.93(CH4) | [ |
Cu⁃TiO2/NiO x | 11.85(CO),9.51(CH4) | [ |
CoN x /TiO2 | 24.40(CO),119.90(CH4) | [ |
Pd⁃Ov⁃TNB | 25.98(C2产物) | [ |
介孔TiO2⁃P123 | 0.30*(CO),12.30*(CH4), 15.70*(H2) | [ |
中空核壳TiO2@In2S3 | 25.35(CO),1.24(CH4) | [ |
中空立方Cu x Au1-x / TiO2 | 6.08(CO) | [ |
表2 部分光催化还原CO2的TiO2基催化剂
Table 2 TiO2 based catalyst for partial photocatalytic reduction of CO2
催化剂 | 产品产率/(µmol·g-1·h-1) | 参考文献 |
---|---|---|
Cs2CuBr4/TiO2 | 272.38(CO),87.62(CH4) | [ |
Ag/Cu⁃Cu2O⁃TiO2 | 62.50(CH4) | [ |
Cu2O QDs/TiO2 NTs | 0.10(CO),2.93(CH4) | [ |
Ni x /TiO2⁃OV | 22.65(CO),3.93(CH4) | [ |
Cu⁃TiO2/NiO x | 11.85(CO),9.51(CH4) | [ |
CoN x /TiO2 | 24.40(CO),119.90(CH4) | [ |
Pd⁃Ov⁃TNB | 25.98(C2产物) | [ |
介孔TiO2⁃P123 | 0.30*(CO),12.30*(CH4), 15.70*(H2) | [ |
中空核壳TiO2@In2S3 | 25.35(CO),1.24(CH4) | [ |
中空立方Cu x Au1-x / TiO2 | 6.08(CO) | [ |
催化剂 | 反应条件 | 产品 | 产率 | 法拉第效率/% | 参考文献 |
---|---|---|---|---|---|
TiO2⁃NT/GNR/Pt⁃Pd⁃Cu | 偏置电位:-1.0 V;参比电极:Ag/AgCl;电解液:3.0 mol/L KCl;Xe灯,150 W | - | - | 13.78(C2H5OH) 84.17(CH3OH) | [ |
CuFeO2/TNNTs (TNNTs: Nb⁃doped TiO2纳米管) | 偏置电位:-0.4 V;参比电极:SCE;Xe灯,250 W | C2H5OH | 3.3 μmol/(5 h·cm2) | 75.00 | [ |
Ti/TiO2NT⁃ZrO2 | 偏置电位:-0.3 V;参比电极:Ag/AgCl;电解液:3.0 mol/L KCl;Xe灯,125 W | CH3OH C2H5OH | 485.0 µmol/L 268.0 µmol/L | - | [ |
Ag–TiO2/RGO | 偏置电位:-0.5 V;参比电极:Ag/AgCl;Xe灯,300 W | C2H5OH | 3.3 μmol/(L·cm2) | 60.50 | [ |
TPPNi@TiO2 | 偏置电位:-0.6 V;参比电极:Ag/AgCl;Xe灯,300 W | CH3OH | 55.5 µmol/(h·cm2) | - | [ |
SnO2/InP/TiO2 NTs | 偏置电位:-1.4 V;参比电极:SCE;Xe灯,500W | CH3OH | 3.2 mmol/(L·cm2) | 23.52 | [ |
CoPc⁃COF@TiO2 NTs | 偏置电位:-0.6 V;参比电极:RHE(In CO2⁃saturated KHCO3/KNO3) | CO(NH2)2 | 1 205 μg/(h·cm2) | 49.00 | [ |
CuO/TiO2纳米纤维 | 偏置电位:-1.1 V;参比电极:SCE | C2H5OH HCOOH | 6.4 μmol/cm2 1.0 μmol/cm2 | - | [ |
表3 TiO2基催化剂还原CO2的电催化和光电催化产物的信息
Table 3 An overview electrocatalysis and photocatalytic products of CO2 reduction by TiO2-based catalysts
催化剂 | 反应条件 | 产品 | 产率 | 法拉第效率/% | 参考文献 |
---|---|---|---|---|---|
TiO2⁃NT/GNR/Pt⁃Pd⁃Cu | 偏置电位:-1.0 V;参比电极:Ag/AgCl;电解液:3.0 mol/L KCl;Xe灯,150 W | - | - | 13.78(C2H5OH) 84.17(CH3OH) | [ |
CuFeO2/TNNTs (TNNTs: Nb⁃doped TiO2纳米管) | 偏置电位:-0.4 V;参比电极:SCE;Xe灯,250 W | C2H5OH | 3.3 μmol/(5 h·cm2) | 75.00 | [ |
Ti/TiO2NT⁃ZrO2 | 偏置电位:-0.3 V;参比电极:Ag/AgCl;电解液:3.0 mol/L KCl;Xe灯,125 W | CH3OH C2H5OH | 485.0 µmol/L 268.0 µmol/L | - | [ |
Ag–TiO2/RGO | 偏置电位:-0.5 V;参比电极:Ag/AgCl;Xe灯,300 W | C2H5OH | 3.3 μmol/(L·cm2) | 60.50 | [ |
TPPNi@TiO2 | 偏置电位:-0.6 V;参比电极:Ag/AgCl;Xe灯,300 W | CH3OH | 55.5 µmol/(h·cm2) | - | [ |
SnO2/InP/TiO2 NTs | 偏置电位:-1.4 V;参比电极:SCE;Xe灯,500W | CH3OH | 3.2 mmol/(L·cm2) | 23.52 | [ |
CoPc⁃COF@TiO2 NTs | 偏置电位:-0.6 V;参比电极:RHE(In CO2⁃saturated KHCO3/KNO3) | CO(NH2)2 | 1 205 μg/(h·cm2) | 49.00 | [ |
CuO/TiO2纳米纤维 | 偏置电位:-1.1 V;参比电极:SCE | C2H5OH HCOOH | 6.4 μmol/cm2 1.0 μmol/cm2 | - | [ |
1 | KAMKENG A D N, WANG M H, HU J, et al. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects[J]. Chemical Engineering Journal, 2021, 409: 128138. |
2 | 吴爽, 刘瑞, 丁巍巍, 等. Al2O3掺杂CaO吸附剂长周期CO2捕集性能研究[J]. 低碳化学与化工, 2024, 49(5): 81⁃87. |
WU S, LIU R, DING W W, et al. Study on long⁃term CO2 capture performance of Al2O3⁃doped CaO adsorbents[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2024, 49(5): 81⁃87. | |
3 | 中国石化有机原料科技情报中心站. 广西大学的CO2电催化制甲酸研究获进展[J]. 石油炼制与化工, 2024, 55(4): 18. |
Sinopec Organic Raw Material Science and Technology Information Center Station. Research progress on CO2 electrocatalytic synthesis of formic acid at Guangxi University[J]. Petroleum Processing and Petrochemicals, 2024, 55(4): 18. | |
4 | 杨文科, 卢连雪, 李鹏, 等. 光催化材料石墨相氮化碳的合成、改性及应用[J]. 石油化工高等学校学报, 2024, 37(1): 43⁃51. |
YANG W K, LU L X, LI P, et al. Synthesis, modification and application of photocatalytic material graphite phase carbon nitride[J]. Journal of Petrochemical Universities, 2024, 37(1): 43⁃51. | |
5 | 苟彤彤, 李燕瑞. 构建导电二维MOF@碳氮异质结提高光催化CO2还原性能[J]. 当代化工, 2024, 53(4): 757⁃763. |
GOU T T, LI Y R. Construction of conductive two⁃dimensional MOF@carbon and nitrogen heterojunctions to improve photocatalytic CO2 reduction performance[J]. Contemporary Chemical Industry, 2024, 53(4): 757⁃763. | |
6 | MGOLOMBANE M, MAJODINA S, BANKOLE O M, et al. Influence of surface modification of zinc oxide⁃based nanomaterials on the photocatalytic reduction of carbon dioxide[J]. Materialstoday Chemistry, 2021, 20: 100446. |
7 | LYULYUKIN M N, KURENKOVA A Y, BUKHTIYAROV A V, et al. Carbon dioxide reduction under visible light: A comparison of cadmium sulfide and titania photocatalysts[J]. Mendeleev Communications, 2020, 30(2): 192⁃194. |
8 | CHEN W, XIONG J Y, WEN Z P, et al. Synchronistic embedding of oxygen vacancy and Ag nanoparticles into potholed TiO2 nanoparticles⁃assembly for collaboratively promoting photocatalytic CO2 reduction[J]. Molecular Catalysis, 2023, 542: 113138. |
9 | KAWAWAKI T, AKINAGA Y, YAZAKI D, et al. Cover feature: Promoting photocatalytic carbon dioxide reduction by tuning the properties of cocatalysts[J]. Chemistry: A European Journal, 2023, 29(9): e202300163. |
10 | LI X, YU J G, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962⁃4179. |
11 | XIANG X M, PAN F P, LI Y. A review on adsorption⁃enhanced photoreduction of carbon dioxide by nanocomposite materials[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 6⁃31. |
12 | ZHANG H G, LI J Z, TAN Q, et al. Metal⁃organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives[J]. Chemistry⁃ A European Journal, 2018, 24(69): 18137⁃18157. |
13 | ZHANG W H, MOHAMED A R, ONG W J. Z⁃scheme photocatalytic systems for carbon dioxide reduction: Where are we now?[J]. Angewandte Chemie (International ed. in English), 2020, 59(51): 22894⁃22915. |
14 | HABISREUTINGER S N, SCHMIDT‐MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372⁃7408. |
15 | HONGRUTAI N, WATMANEE S, PINTHONG P, et al. Electrochemical reduction of carbon dioxide on the oxide⁃containing electrocatalysts[J]. Journal of CO2 Utilization, 2022, 64: 102194. |
16 | ZHANG L, ZHAO Z J, GONG J L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie (International ed. in English), 2017, 56(38): 11326⁃11353. |
17 | FU Y H, SUN D R, CHEN Y J, et al. An amine⁃functionalized titanium metal⁃organic framework photocatalyst with visible⁃light⁃induced activity for CO2 reduction[J]. Angewandte Chemie (International ed. in English), 2012, 51(14): 3364⁃3367. |
18 | 常帅康, 刘闯, 李坤宸, 等. 介观TiO2晶体材料的拓扑转变合成及其性能[J]. 辽宁石油化工大学学报, 2023, 43(1): 27⁃31. |
CHANG S K, LIU C, LI K C, et al. Preparation of TiO2 mesocrystals by topochemical conversion and their performance[J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 27⁃31. | |
19 | SHARMA P P, KE F S, ZHOU X D. Dependence of the electrocatalytic activity towards CO2 reduction on the crystal structure of TiO2[C]//225th ECS Meeting. Red Hook: Curran Associates, Inc., 2014: 20. |
20 | ABDOULAYE D, ZHANG H Y, LIU J, et al.Electrocatalytic and optoelectronic characteristics of the two⁃dimensional titanium nitride Ti4N3Tx MXene[J]. ACS Applied Materials & Interfaces,2019,11(12):11812⁃11823. |
21 | HE W J, WU X X, LI Y F, et al. Z⁃scheme heterojunction of SnS2⁃decorated 3DOM⁃SrTiO3 for selectively photocatalytic CO2 reduction into CH4[J]. Chinese Chemical Letters, 2020, 31(10): 2774⁃2778. |
22 | XU Y J, WANG F, LEI S L, et al. In situ grown two⁃dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2023, 452(Part 3): 139392. |
23 | WANG K, HE S H, LIN Y Z, et al. Photo⁃enhanced thermal catalytic CO2 methanation activity and stability over oxygen⁃deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal⁃support interactions[J]. Chinese Journal of Catalysis, 2022, 43(2): 391⁃402. |
24 | LIU J F, LIU B, REN Y, et al. Hydrogenated nanotubes/nanowires assembled from TiO2 nanoflakes with exposed {111} facets: Excellent photo⁃catalytic CO2 reduction activity and charge separation mechanism between (111) and (111) polar surfaces[J]. Journal of Materials Chemistry A, 2019, 7(24): 14761⁃14775. |
25 | XU H, OUYANG S X, LI P, et al. High⁃active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1348⁃1354. |
26 | ZHANG J, CHEN S, QIAN L S, et al. Regulating photocatalytic selectivity of anatase TiO2 with {101}, {001},and {111} facets[J]. Journal of the American Ceramic Society, 2014, 97(12): 4005⁃4010. |
27 | CHEN J S, LOU X W. Unusual rutile TiO2 nanosheets with exposed (001) facets[J]. Chemical Science, 2011: 2(11): 2219⁃2223. |
28 | ZHANG J, LIU P L, LU Z D, et al. One⁃step synthesis of rutile nano⁃TiO2 with exposed {111} facets for high photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 632: 133⁃139. |
29 | ZHANG J, WU B, HUANG L H, et al. Anatase nano⁃TiO2 with exposed curved surface for high photocatalytic activity[J]. Journal of Alloys and Compounds, 2016, 661: 441⁃447. |
30 | HOSSEN M A, SOLAYMAN H M, LEONG K H, et al. A comprehensive review on advances in TiO2 nanotube (TNT)⁃based photocatalytic CO2 reduction to value⁃added products[J]. Energies, 2022, 15(22): 8751. |
31 | ZHOU J, WU H, SUN C Y, et al. Ultrasmall C⁃TiO2- x nanoparticle/g⁃C3N4 composite for CO2 photoreduction with high efficiency and selectivity[J]. Journal of Materials Chemistry A, 2018, 6(43): 21596⁃21604. |
32 | MENG J Z, WANG K W, WANG Y, et al. Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4[J]. Nano Research, 2024, 17(3): 1190⁃1198. |
33 | KUMAR D P, DO K H, RANGAPPA A P, et al. Highly stable and durable ZnIn2S4 nanosheets wrapped oxygen deficient blue TiO2 (B) catalyst for selective CO2 photoreduction into CO and CH4[J]. Journal of Colloid and Interface Science, 2023, 651: 264⁃272. |
34 | ABDEL⁃MAGEED A M, WIESE K, HAUBLE A, et al. Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects[J]. Journal of Catalysis, 2021, 401: 160⁃173. |
35 | ALI M A,KLARA W,ASHLEE H, et al.Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects[J].Journal of Catalysis,2021,401160⁃173. |
36 | LIU T L, HUSSAIN S, LIU T F. First principles investigations of the carbon dioxide reduction to ethylene over the M10@TiO2 catalysts[J]. Molecular Catalysis, 2023, 545: 113180. |
37 | CHEN W, XIONG J Y, WEN Z P, et al. Synchronistic embedding of oxygen vacancy and Ag nanoparticles into potholed TiO2 nanoparticles⁃assembly for collaboratively promoting photocatalytic CO2 reduction[J]. Molecular Catalysis, 2023, 542: 113138. |
38 | WANG Y L, HE W J, XIONG J, et al. MIL⁃68 (In) ⁃derived In2O3@TiO2 S⁃scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels[J]. Fuel, 2023, 331(Part 1): 125719. |
39 | LIU T, QILENG A, WUBULIKASIMU N, et al. Self⁃sacrificial templated synthesis of Fe/N Co⁃doping TiO2 for enhanced CO2 photocatalytic reduction[J]. Chemnanomat, 2023, 9(10): e202300343. |
40 | QIAN J Y, HU H, LIANG Y, et al. Mesoporous TiO2 matrix embeded with Cs2CuBr4 perovskite quantum dots as a step⁃scheme⁃based photocatalyst for boosting charge separation and CO2 photoconversion[J]. Applied Surface Science, 2024, 648: 159084. |
41 | LI Y F, WEI Y C, XIONG J, et al. Au@ZnS core–shell nanoparticles decorated 3D hierarchical porous TiO2 photocatalysts for visible⁃light⁃driven CO2 reduction into CH4[J]. Chemical Engineering Science, 2024, 292: 120017. |
42 | LI B H, ZHANG K H, WANG X J, et al. Construction synergetic adsorption and activation surface via confined Cu/Cu2O and Ag nanoparticles on TiO2 for effective conversion of CO2 to CH4[J]. Journal of Colloid and Interface Science, 2024, 660: 961⁃973. |
43 | YUAN B X, QIAN H, CAO L, et al. Designed synthesis of Cu2O quantum Dots/TiO2 nanotubes heterostructure as a photocatalyst for converting CO2 to CH4[J]. Advanced Engineering Materials, 2023, 25(22): 2301062. |
44 | LI Z H, BAI W C, LIU D, et al. Preloaded oxygen vacancy conditioning Ni/TiO2 to enhance photocatalytic CO2 reduction[J]. Separation and Purification Technology, 2024, 330(Part A): 125250. |
45 | TANG J Y, LIU X J, GUO R T, et al. Constructing Cu defect band within TiO2 and supporting NiOx nanoparticles for efficient CO2 photoreduction[J]. Dalton Transactions, 2024, 53(9): 4088⁃4097. |
46 | ZENG P, LIU H R, JIA H Y, et al. In⁃situ synthesis of single⁃atom CoNx clusters⁃decorated TiO2 for highly efficient charge separation and CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2024, 340: 123268. |
47 | XUE J B, JIA X, SUN Z, et al. Selective CO2 photoreduction to C2 hydrocarbon via synergy between metastable ordered oxygen vacancies and hydrogen spillover over TiO2 nanobelts[J]. Applied Catalysis B: Environmental, 2024, 342: 123372. |
48 | RELI M, NADRAH P, FILIP EDELMANNOVÁ M, et al. Photocatalytic CO2 reduction over mesoporous TiO2 photocatalysts[J]. Materials Science in Semiconductor Processing, 2024, 169: 107927. |
49 | YOU F F, ZHOU T H, LI J X, et al. Rich oxygen vacancies in confined heterostructured TiO2@In2S3 hybrid for boosting solar⁃driven CO2 reduction[J]. Journal of Colloid and Interface Science, 2024, 660: 77⁃86. |
50 | MU X W, XU Q H, XIE Y, et al. Hollow cubic TiO2 loaded with copper and gold nanoparticles for photocatalytic CO2 reduction[J]. Journal of Alloys and Compounds, 2024, 980: 173589. |
51 | 谢英男, 杨艳菊, 宋伟. 水热处理温度对TiO2/Al2O3膜催化剂光催化性能的影响[J]. 化工环保, 2023, 43(1): 119⁃125. |
XIE Y N, YANG Y J, SONG W. Effect of hydrothermal temperature on photocatalytic activity of TiO2/Al2O3 film catalyst[J]. Environmental Protection of Chemical Industry, 2023, 43(1): 119⁃125. | |
52 | CAO H Z, ZHENG W J, ZHANG L Q, et al. Preparation of Cu2ZnSnS4@TiO2 nanotubes by pulsed electrodeposition for efficiently photoelectrocatalytic reduction of CO2 to ethanol[J]. International Journal of Hydrogen Energy, 2023, 48(83): 32342⁃32355. |
53 | MUBARAK S, DHAMODHARAN D, BYUN H S, et al. Efficient photoelectrocatalytic conversion of CO2 to formic acid using Ag⁃TiO2 nanoparticles formed on the surface of nanoporous structured Ti foil[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 124⁃131. |
54 | LI T T, SHAN B, XU W, et al. Electrocatalytic CO2 reduction with a ruthenium catalyst in solution and on nanocrystalline TiO2[J]. ChemSusChem, 2019, 12(11): 2402⁃2408. |
55 | WEI Y, DUAN R Z, ZHANG Q L, et al. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TIN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism[J]. Chinese Journal of Catalysis, 2023, 47: 243⁃253. |
56 | ZHANG L Q, CAO H Z, PEN Q Y, et al. Embedded CuO nanoparticles@TiO2⁃nanotube arrays for photoelectrocatalytic reduction of CO2 to methanol[J]. Electrochimica Acta, 2018, 283: 1507⁃1513. |
57 | DE SOUZA M K R, CARDOSO E D S F, FORTUNATO G V, et al. Combination of Cu⁃Pt⁃Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105803. |
58 | ZHANG L Q, CAO H Z, LU Y H, et al. Effective combination of CuFeO2 with high temperature resistant Nb⁃doped TiO2 nanotube arrays for CO2 photoelectric reduction[J]. Journal of Colloid and Interface Science, 2020, 568: 198⁃206. |
59 | PERINI J A L, CARDOSO J C, BRITO J F, et al. Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion[J]. Journal of CO2 Utilization, 2018, 25: 254⁃263. |
60 | BHARATH G, PRAKASH J, RAMBABU K, et al. Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere[J]. Environmental Pollution, 2021, 281: 116990. |
61 | DONG Y P, NIE R, WANG J X, et al. Photoelectrocatalytic CO2 reduction based on metalloporphyrin⁃modified TiO2 photocathode[J]. Chinese Journal of Catalysis, 2019, 40(8): 1222⁃1230. |
62 | ZHENG J G, HU F Y, HAN E S, et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 329⁃335. |
63 | LI N, GAO H, LIU Z X, et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate[J]. Science China Chemistry, 2023, 66(5): 1417⁃1424. |
64 | LU Y H, CAO H Z, XU S H, et al. A comparative study of the effects of different TiO2 supports toward CO2 electrochemical reduction on CuO/TiO2 electrode[J]. RSC Advances, 2021, 11(35): 21805⁃21812. |
65 | 张星, 贾善坡, 徐萌, 等. 基于CO2注入的断层失稳渗流⁃应力耦合分析[J]. 东北石油大学学报, 2023, 47(3): 69⁃78. |
ZHANG X, JIA S P, XU M, et al. Coupled seepage⁃stress analysis of fault instability induced by CO2 injection[J]. Journal of Northeast Petroleum University, 2023, 47(3): 69⁃78. | |
66 | 叶秀茹, 汪万飞, 付红. 原位二氧化碳泡沫驱提高采收率实验[J]. 油田化学, 2024, 41(1): 108⁃115. |
YE X R, WANG W F, FU H. Experimental study on enhanced oil recovery by in⁃situ CO2 foam flooding[J]. Oilfield Chemistry, 2024, 41(1): 108⁃115. |
[1] | 马馨月, 陈雷, 王芳芳, 陈常东. g⁃C3N4/Co3O4的制备及其光催化降解四环素研究[J]. 石油化工高等学校学报, 2024, 37(5): 56-64. |
[2] | 李乐乐, 申丽莎, 涂志明, 卢卓信, 谭弘毅, 杨轶, 闫常峰. Cu掺杂WN松枝状自支撑纳米阵列的制备及其碱性析氢性能的研究[J]. 石油化工高等学校学报, 2024, 37(4): 57-65. |
[3] | 毕艳琴, 陈亮亮, 段春阳, 赵增华. Ce-CoFe-P@CC纳米复合催化体系的OER性能[J]. 石油化工高等学校学报, 2024, 37(3): 49-57. |
[4] | 杨文科, 卢连雪, 李鹏, 张健, 胡绍争. 光催化材料石墨相氮化碳的合成、改性及应用[J]. 石油化工高等学校学报, 2024, 37(1): 43-51. |
[5] | 宁尧, 刘满, 刘素燕. 多孔碳BVO/Zn@ZPC的制备及其光降解性能[J]. 石油化工高等学校学报, 2023, 36(6): 36-47. |
[6] | 杜坤, 郭佳欣, 马紫昂, 毛晶, 凌涛, 赵巍. 中性环境下电催化析氧反应研究进展[J]. 石油化工高等学校学报, 2023, 36(5): 1-14. |
[7] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[8] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
[9] | 张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 19-27. |
[10] | 范琳, 杨磊, 车晓甄, 李夺, 潘立卫, 钟和香. CO2电化学还原制CO金属催化剂的研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 48-58. |
[11] | 许雪容, 彭祥. 层状双金属氢氧化物电催化剂的合成与应用研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 1-11. |
[12] | 杨扬, 孟超, 胡涵, 吴明铂. NiCo2O4/Ru复合催化剂的制备及锌空电池的应用[J]. 石油化工高等学校学报, 2022, 35(5): 64-70. |
[13] | 张若男, 何仕婕, 王晓蓉, 王芳芳, 陈常东. BaTiO3⁃TiO2复合体的软化学制备及其性能研究[J]. 石油化工高等学校学报, 2022, 35(4): 46-51. |
[14] | 赵东启, 顾贵洲, 李政. 水滑石类光催化剂在污水处理中的应用[J]. 石油化工高等学校学报, 2022, 35(3): 36-42. |
[15] | 宋楗, 韩乔, 杨占旭. NiMoP/C复合材料的制备及其电催化析氢性能[J]. 石油化工高等学校学报, 2022, 35(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发