1 |
Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes [J]. Solid State Ionics, 2006, 177(35): 3193⁃3198.
|
2 |
Horita T, Cho D H, Wang F F, et al. Correlation between degradation of cathode performance and chromium concentration in (La, Sr) MnO3 cathode[J]. Solid State Ionics, 2012, 225: 151⁃156.
|
3 |
Yokokawa H, Watanabe T, Ueno A, et al. Investigation on degradation in long⁃term operation of four different stacks/modules[J]. ECS Transactions, 2007, 7(1): 133⁃140.
|
4 |
Yokokawa H. Report of five⁃year NEDO project on durability/reliability of SOFC stacks[J]. ECS Transactions, 2013, 57(1): 299⁃308.
|
5 |
Yokokawa H. Current status of rapid evaluation of durability of six SOFC stacks within NEDO project[J]. ECS Transactions, 2015, 68(1): 1827⁃1836.
|
6 |
Yokokawa H, Hori Y, Shigehisa T, et al. Recent achievements of NEDO durability project with an emphasis on correlation between cathode over potential and ohmic loss[J]. Fuel Cells, 2017, 17(4): 473⁃497.
|
7 |
马怡轲, 尹艳镇, 黄亮亮. 磷酸盐作为质子传导材料的研究进展[J]. 辽宁石油化工大学学报, 2019, 39(6): 1⁃9.
|
|
Ma Y K, Yin Y Z, Hang L L. Research progress of phosphate as proton conducting material[J]. Journal of Liaoning Shihua University, 2019, 39(6): 1⁃9.
|
8 |
刘陆, 陈立, 李艳武, 等. 金属⁃草酸化合物作为质子传导材料的研究进展[J]. 石油化工高等学校学报, 2020, 33(6): 1⁃7.
|
|
Liu L, Chen L, Li Y W, et al. Research progress of metal⁃oxalate compounds as proton conduction materials[J]. Journal of Petrochemical Universities, 2020, 33(6): 1⁃7.
|
9 |
Wang F F, Kishimoto H, Develos B K, et al. Interrelation between sulfur poisoning and performance degradation of LSCF cathode for SOFCs[J]. Journal of the Electrochemical Society, 2016, 163(8): 899⁃904.
|
10 |
Wang F F, Yan K, Budiman K A, et al. Effect of operating temperature on sulfur distribution and performance degradation of porous La0.6Sr0.4Co0.2Fe0.8O3-δ Electrode[J]. Journal of the Electrochemical Society, 2020, 167: 114507.
|
11 |
Wang F F, Yamaji K, Cho D H, et al. Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs[J]. Journal of the Electrochemical Society, 2011, 158(11): B1391⁃1397.
|
12 |
Wang F F, Kishimoto H, Ishiyama T, et al. A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells [J]. Journal of Power Sources, 2020, 478: 228763.
|
13 |
Wang F F, Yamaji K, Cho D H, et al. Effect of strontium concentration on sulfur poisoning of LSCF cathodes[J]. Solid State Ionics, 2012, 225: 157⁃160.
|
14 |
Wang F F, Yamaji K, Cho D H, et al. Evaluation of sulfur dioxide poisoning for LSCF cathodes[J]. Fuel Cells, 2013, 13(4): 520⁃525.
|
15 |
Budiman R A, Liu S S, Bagarinao K D, et al. Determination of factors governing surface composition and degradation of La0.6Sr0.4Co0.2Fe0.8O3⁃δ electrode under sulfur⁃contained air [J]. Journal of the Electrochemical Society, 2019, 166(6): 414⁃422.
|
16 |
Bucher E, Gspan C, Hofer F, et al. Sulphur poisoning of the SOFC cathode material La0.6Sr0.4CoO3⁃δ[J]. Solid State Ionics, 2013, 238: 15⁃23.
|
17 |
Bucher E, Gspan C, Sitte W. Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3⁃δ in SO2⁃containing atmospheres[J]. Solid State Ionics, 2015, 272: 112⁃120.
|
18 |
Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic analysis of reaction profiles between LaMO3 (M=Ni, Co, Mn) and ZrO2[J]. Journal of the Electrochemical Society, 1991, 138(9): 2719⁃2727.
|
19 |
Chen G, Kishimoto H, Yamaji K, et al. Effect of interaction between A⁃site deficient LST and ScSZ on electrochemical performance of SOFC[J]. Journal of the Electrochemical Society, 2015, 162(3):223⁃228.
|
20 |
Fu C J, Sun K N, Chen X B, et al. Electrochemical properties of A⁃site deficient SOFC cathodes under Cr poisoning conditions[J]. Electrochimica Acta, 2009, 54(28): 7301⁃7312.
|
21 |
Yokokawa H, Sakai N, Horita T, et al. Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes[J]. Journal of Alloys and Compounds, 2008, 452(1): 41⁃47.
|