1 |
XU Y, GE R Y, YANG J, et al. Molybdenum disulfide (MoS2)⁃based electrocatalysts for hydrogen evolution reaction⁃from mechanism to manipulation[J]. Journal of Energy Chemistry, 2022, 74: 45⁃71.
|
2 |
GE H, KUWAHARA Y, YAMASHITA H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis[J]. Chemical Communications, 2022, 58(61): 8466⁃8479.
|
3 |
ABDOLAHI B, GHOLIVAND M B, SHAMSIPUR M, et al. Ordered mesoporous carbon/molybdenum carbide nanocomposite with high electrochemical performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2022, 905: 164185.
|
4 |
TIAN L, LI Z, WANG P, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry, 2021, 55: 279⁃294.
|
5 |
余志超, 汤振国, 张楠, 等. CdS量子点修饰TiO2纳米管及光解水产氢性能研究[J]. 石油化工高等学校学报, 2022, 35(4): 38⁃45.
|
|
YU Z C, TANG Z G, ZHANG N, et al. TiO2 nanotubes modified by CdS quantum dots and performance of photocatalytic water splitting for hydrogen[J]. Journal of Petrochemical Universities, 2022, 35(4): 38⁃45.
|
6 |
GAURAV A, JAIN A, TRIPATHI S K. Review on fluorescent carbon/graphene quantum dots: Promising material for energy storage and next⁃generation light⁃emitting diodes[J]. Materials, 2022, 15(22): 7888.
|
7 |
CHI W G, BANERJEE S K. Application of perovskite quantum dots as an absorber in perovskite solar cells[J]. Angewandte Chemie International Edition, 2022, 61(9): e202112412.
|
8 |
PERMATASARI F A, IRHAM M A, BISRI S Z, et al. Carbon⁃based quantum dots for supercapacitors: Recent advances and future challenges[J]. Nanomaterials, 2021, 11(1): 91.
|
9 |
KAUR A, PANDEY K, KAUR R, et al. Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors[J]. Chemosensors, 2022, 10(9): 367.
|
10 |
ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small, 2015, 11(14): 1620⁃1636.
|
11 |
HALDAR D, DINDA D, SAHA S K. High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives[J]. Journal of Materials Chemistry C, 2016, 4(26): 6321⁃6326.
|
12 |
LIN H H, WANG C X, WU J P, et al. Colloidal synthesis of MoS2 quantum dots: Size⁃dependent tunable photoluminescence and bioimaging[J]. New Journal of Chemistry, 2015, 39(11): 8492⁃8497.
|
13 |
DAI W H, DONG H F, ZHANG X J. A semimetal⁃like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency[J]. Materials, 2018, 11(9): 1776.
|
14 |
MAO B G, BAO T, YU J, et al. One⁃pot synthesis of MoSe2 hetero⁃dimensional hybrid self⁃assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy[J]. Nano Research, 2017, 10(8): 2667⁃2682.
|
15 |
WANG N, TANG D Y, ZOU H Y, et al. Synthesis of molybdenum oxide quantum dots with better dispersity and bio⁃imaging ability by reduction method[J]. Optical Materials, 2018, 83: 19⁃27.
|
16 |
KANG H, LEE T, PARK Y, et al. Colloidal synthetic methods of amorphous molybdenum phosphide nanoparticles for hydrogen evolution reaction catalysts[J]. Korean Journal of Chemical Engineering, 2020, 37(8): 1419⁃1426.
|
17 |
KIM M, PARK Y, LEE T, et al. Transition⁃metal⁃incorporated molybdenum phosphide nanocatalysts synthesized through post⁃synthetic transformation for the hydrogen evolution reaction[J]. International Journal of Energy Research, 2022, 46(12): 17668⁃17681.
|
18 |
MCENANEY J M, CROMPTON J C, CALLEJAS J F, et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution[J]. Chemistry of Materials, 2014, 26(16): 4826⁃4831.
|
19 |
NKABINDE S S, NDALA Z B, SHUMBULA N P, et al. Delineating the role of crystallinity in the electrocatalytic activity of colloidally synthesized MoP nanocrystals[J]. New Journal of Chemistry, 2020, 44(33): 14041⁃14049.
|
20 |
ALI L, SUBHAN F, AYAZ M, et al. Exfoliation of MoS2 quantum dots: Recent progress and challenges[J]. Nanomaterials, 2022, 12(19): 3465.
|
21 |
GUO Y M, LI J W. MoS2 quantum dots: Synthesis, properties and biological applications[J]. Materials Science and Engineering C, 2020, 109: 110511.
|
22 |
DHANABALAN S C, DHANABALAN B, PONRAJ J S, et al. 2D⁃materials⁃based quantum dots: Gateway towards next⁃generation optical devices[J]. Advanced Optical Materials, 2017, 5(19): 1700257.
|
23 |
ARUL N S, NITHYA V D. Molybdenum disulfide quantum dots: Synthesis and applications[J]. RSC Advances, 2016, 6(70): 65670⁃65682.
|
24 |
HUANG H, DU C C, SHI H Y, et al. Water⁃soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence[J]. Particle & Particle Systems Characterization, 2015, 32(1): 72⁃79.
|
25 |
GAO W Y, WANG M Q, RAN C X, et al. Facile one⁃pot synthesis of MoS2 quantum dots⁃graphene⁃TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2015, 51(9): 1709⁃1712.
|
26 |
WANG X J, WU Q, JIANG K L, et al. One⁃step synthesis of water⁃soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose[J]. Sensors and Actuators B: Chemical, 2017, 252: 183⁃190.
|
27 |
MUSCUSO L, CRAVANZOLA S, CESANO F, et al. Optical, vibrational, and structural properties of MoS2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3791⁃3801.
|
28 |
WANG T Y, LIU L, ZHU Z W, et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self⁃assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode[J]. Energy & Environmental Science, 2013, 6(2): 625⁃633.
|
29 |
NGUYEN T P, SOHN W, OH J H, et al. Size⁃dependent properties of two⁃dimensional MoS2 and WS2[J]. The Journal of Physical Chemistry C, 2016, 120(18): 10078⁃10085.
|
30 |
LU X L, WANG R G, HAO L F, et al. Oxidative etching of MoS2/WS2 nanosheets to their QDs by facile UV irradiation[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 31211⁃31216.
|
31 |
DONG L, LIN S, YANG L, et al. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents[J]. Chemical Communications, 2014, 50(100): 15936⁃15939.
|
32 |
GOPALAKRISHNAN D, DAMIEN D, LI B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications, 2015, 51(29): 6293⁃6296.
|
33 |
LI B L, CHEN L X, ZOU H L, et al. Electrochemically induced Fenton reaction of few⁃layer MoS2 nanosheets: Preparation of luminescent quantum dots via a transition of nanoporous morphology[J]. Nanoscale, 2014, 6(16): 9831⁃9838.
|
34 |
HAN C C, ZHANG Y, GAO P, et al. High⁃yield production of MoS2 and WS2 quantum sheets from their bulk materials[J]. Nano Letters, 2017, 17(12): 7767⁃7772.
|
35 |
LI F, LI J, CAO Z, et al. MoS2 quantum dot decorated RGO: A designed electrocatalyst with high active site density for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(43): 21772⁃21778.
|
36 |
BABY M, KUMAR K R. Synthesis and characterisation of MoS2 quantum dots by liquid nitrogen quenching[J]. Materials Science and Technology, 2019, 35(12): 1416⁃1427.
|
37 |
WANG Y, LIU Y, ZHANG J F, et al. Cryo⁃mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500.
|
38 |
ZHOU K, ZHANG Y, XIA Z N, et al. As⁃prepared MoS2 quantum dot as a facile fluorescent probe for long⁃term tracing of live cells[J]. Nanotechnology, 2016, 27(27): 275101.
|
39 |
DONG H F, TANG S S, HAO Y S, et al. Fluorescent MoS2 quantum dots: Ultrasonic preparation, up⁃conversion and down⁃conversion bioimaging, and photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3107⁃3114.
|
40 |
HA H D, HAN D J, CHOI J S, et al. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon[J]. Small, 2014, 10(19): 3858⁃3862.
|
41 |
DAI W H, DONG H F, FUGETSU B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging[J]. Small, 2015, 11(33): 4158⁃4164.
|
42 |
CAO H Y, TANG M J, WANG X, et al. Facile and rapid synthesis of emission color⁃tunable molybdenum oxide quantum dots as a versatile probe for fluorescence imaging and environmental monitoring[J]. Analyst, 2020, 145(19): 6270⁃6276.
|
43 |
WANG C D, JIANG J J, RUAN Y J, et al. Construction of MoO2 quantum dot⁃graphene and MoS2 nanoparticle⁃graphene nanoarchitectures toward ultrahigh lithium storage capability[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28441⁃28450.
|
44 |
XU Y, YI R, YUAN B, et al. High capacity MoO2/graphite oxide composite anode for lithium⁃ion batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 309⁃314.
|
45 |
LIU X H, YIN Y X, DU F, et al. In situ synthesis of ultrafine metallic MoO2/carbon nitride nanosheets for efficient photocatalytic hydrogen generation: A prominent cocatalytic effect[J]. Catalysis Science & Technology, 2020, 10(12): 4053⁃4060.
|
46 |
CAO H Y, HU X, SHI W B, et al. pH⁃regulated reversible photoluminescence and localized surface plasmon resonances arising from molybdenum oxide quantum dot[J]. Applied Materials Today, 2020, 18: 100516.
|
47 |
XIAO S J, ZHAO X J, HU P P, et al. Highly photoluminescent molybdenum oxide quantum dots: One⁃pot synthesis and application in 2,4,6⁃trinitrotoluene determination[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8184⁃8191.
|
48 |
XIAO S J, ZHAO X J, ZUO J, et al. Highly photoluminescent MoOx quantum dots: Facile synthesis and application in off⁃on Pi sensing in lake water samples[J]. Analytica Chimica Acta, 2016, 906: 148⁃155.
|
49 |
ZHANG Z Y, YANG Z L, CHEN X Y, et al. Facile gradient oxidation synthesizing of highly⁃fluorescent MoO3 quantum dots for Cr2O 7 2 - trace sensing[J]. Inorganic Chemistry Communications, 2020, 118: 108001.
|
50 |
TONG W Z, AN Y, BAO C X, et al. Improving mechanical properties of copper composite by interconnected MoO2 quantum dots[J]. Materials Science and Engineering: A, 2022, 848: 143365.
|
51 |
QI S P, LIU G N, TAN L, et al. Top⁃down fabrication of colloidal plasmonic MoO3- x nanocrystals via solution chemistry hydrogenation[J]. Chemical Communications, 2020, 56(35): 4816⁃4819.
|
52 |
LU X L, WANG R G, HAO L F, et al. Preparation of quantum dots from MoO3 nanosheets by UV irradiation and insight into morphology changes[J]. Journal of Materials Chemistry C, 2016, 4(48): 11449⁃11456.
|
53 |
BORAH D J, MOSTAKO A T T, BORGOGOI A T, et al. Modified top⁃down approach for synthesis of molybdenum oxide quantum dots: Sonication induced chemical etching of thin films[J]. RSC Advances, 2020, 10(6): 3105⁃3114.
|
54 |
BORAH D J, MOSTAKO A T T, MALAKAR A. Tailoring the crystalline phase and size of the MoO3 quantum dots via sonication induced modified top⁃down method[J]. Journal of Alloys and Compounds, 2022, 891: 161870.
|
55 |
YANG F, LIU D Z, LI Y X, et al. Solid⁃state synthesis of ultra⁃small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production[J]. Chemical Engineering Journal, 2021, 406: 126838.
|
56 |
WEI M H, LI B, JIN C, et al. A 3D free⁃standing thin film based on N, P⁃codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li⁃O2 batteries[J]. Energy Storage Materials, 2019, 17: 226⁃233.
|
57 |
ZHANG J L, CHENG Y, CHEN H B, et al. MoP quantum dot⁃modified N,P⁃carbon nanotubes as a multifunctional separator coating for high⁃performance lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16289⁃16299.
|
58 |
YU B, MA F, CHEN D J, et al. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li⁃S batteries[J]. Journal of Materials Science & Technology, 2021, 90: 37⁃44.
|
59 |
HUANG Y, SONG X N, DENG J, et al. Ultra⁃dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis[J]. Applied Catalysis B: Environmental, 2019, 245: 656⁃661.
|
60 |
JIANG E J, LI J Q, LI X L, et al. MoP⁃Mo2C quantum dot heterostructures uniformly hosted on a heteroatom⁃doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting[J]. Chemical Engineering Journal, 2022, 431(Part 4): 133719.
|
61 |
YAN Z H, HUANG Z Y, ZHOU H H, et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium⁃ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 571⁃578.
|
62 |
CHEN N N, ZHANG W B, ZENG J C, et al. Plasma⁃engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 268: 118441.
|
63 |
FENG W H, YUAN J, GAO F, et al. Piezopotential⁃driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N⁃doped graphene vesicles for superhigh H2 production from pure water[J]. Nano Energy, 2020, 75: 104990.
|
64 |
TAN M X, YU C Y, LUAN Q J, et al. The mott⁃schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2022, 10(40): 21465⁃21473.
|
65 |
LIU J F, WANG P, FAN J J, et al. Hetero⁃phase MoC⁃Mo2C nanoparticles for enhanced photocatalytic H2⁃production activity of TiO2[J]. Nano Research, 2021, 14(4): 1095⁃1102.
|
66 |
LIU X F, ZHANG X F, DOU Y, et al. Ultrasmall Mo2C nanocrystals embedded in N⁃doped porous carbons as a surface⁃dominated capacitive anode for lithium⁃ion capacitors[J]. Chemical Communications, 2021, 57(40): 4966⁃4969.
|
67 |
CUI C L, ZHANG G R, YANG Y, et al. Ultra⁃thin carbon bridged MoC quantum dots/g⁃C3N4 with charge⁃transfer⁃reaction highways for boosting photocatalytic hydrogen production[J]. Journal of Alloys and Compounds, 2022, 910: 164864.
|
68 |
YU B, HUANG A J, CHEN D J, et al. In situ construction of Mo2C quantum dots⁃decorated CNT networks as a multifunctional electrocatalyst for advanced lithium⁃sulfur batteries[J]. Small, 2021, 17(23): e2100460.
|
69 |
LIN L, SUN Z M, YUAN M W, et al. α⁃MoC1– x quantum dots encapsulated in nitrogen⁃doped carbon for hydrogen evolution reaction at all pH values[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9637⁃9645.
|
70 |
LÜ Z, TAHIR M, LANG X W, et al. Well⁃dispersed molybdenum nitrides on a nitrogen⁃doped carbon matrix for highly efficient hydrogen evolution in alkaline media[J]. Journal of Materials Chemistry A, 2017, 5(39): 20932⁃20937.
|
71 |
YUWEN L H, ZHOU J J, ZHANG Y Q, et al. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells[J]. Nanoscale, 2016, 8(5): 2720⁃2726.
|
72 |
LUAN C Y, XIE S, MA C Y, et al. Elucidation of luminescent mechanisms of size⁃controllable MoSe2 quantum dots[J]. Applied Physics Letters, 2017, 111(7): 073105.
|
73 |
DHENADHAYALAN N, LIN T W, LEE H L, et al. Multisensing capability of MoSe2 quantum dots by tuning surface functional groups[J]. ACS Applied Nano Materials, 2018, 1(7): 3453⁃3463. (编辑 喻育红)
|