1 |
梁红玉, 李建中, 田彦文, 等. 不同g⁃C3N4/WO3异质结材料的制备及其光催化性能研究[J]. 石油化工高等学校学报, 2018, 31(1): 23⁃29.
|
|
LIANG H Y, LI J Z, TIAN Y W, et al. Different preparation and photocatalytic performance of g⁃C3N4/WO3 heterojunctions[J]. Journal of Petrochemical Universities, 2018, 31(1): 23⁃29.
|
2 |
SAGIR M, TAHIR M B, AKRAM J, et al. Nanoparticles and significance of photocatalytic nanoparticles in wastewater treatment: A review[J]. Current Analytical Chemistry, 2021, 17(1): 38⁃48.
|
3 |
MASHURI S I S, IBRAHIM M L, KASIM M F, et al. Photocatalysis for organic wastewater treatment: From the basis to current challenges for society[J]. Catalysis, 2020, 10(11): 1260.
|
4 |
亢春, 马会强, 李爽. Fe掺杂g⁃C3N4光催化活化过硫酸钠降解偶氮染料[J]. 辽宁石油化工大学学报, 2022, 42(5): 13⁃17.
|
|
KANG C, MA H Q, LI S. Fe⁃doped g⁃C3N4 photocatalytic activation of persulfate for degradation of azo dyes[J]. Journal of Liaoning Petrolchemical University, 2022, 42(5): 13⁃17.
|
5 |
LIEBIG J. Analyse der harnsäure[J]. Journal für Praktische Chemie, 1834, 2(1): 342⁃344.
|
6 |
FRANKLIN E C. The ammono carbonic acids[J]. Journal of the American Chemical Society, 1922, 44(3): 486⁃509.
|
7 |
LIU A Y, COHEN M L. Prediction of new low compressibility solids[J]. Science, 1989, 245(4920): 841⁃842.
|
8 |
TETER D M, HEMLEY R J. Low⁃compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53⁃55.
|
9 |
张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9): 1865⁃1876.
|
|
ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Physico⁃Chimica Sinica, 2013, 29(9): 1865⁃1876.
|
10 |
白佳琦, 崔雨琦, 唐清文, 等. 石墨相氮化碳光催化剂的制备、改性及其在水处理中的应用[J]. 环境科学学报, 2022, 42(2): 69⁃80.
|
|
BAI J Q, CUI Y Q, TANG Q W, et al. Preparation and modification of graphite⁃phase carbon nitride photocatalyst and its application in water treatment[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 69⁃80.
|
11 |
GUO Q X, YANG Q, YI C Q, et al. Synthesis of carbon nitrides with graphite⁃like or onion⁃like lamellar structures via a solvent⁃free route at low temperatures[J]. Carbon, 2005, 43(7): 1386⁃1391.
|
12 |
ZHANG Z H, LEINENWEBER K, BAUER M, et al. High⁃pressure bulk synthesis of crystalline C6N9H3·HCl: A novel C3N4 graphitic derivative[J]. Journal of the American Chemical Society, 2001, 123(32): 7788⁃7796.
|
13 |
白锁柱, 刘景海, 康大伟, 等. 固相法合成石墨相氮化碳材料及电化学储能研究[J]. 内蒙古民族大学学报(自然科学版), 2021, 36(1): 1⁃6.
|
|
BAI S Z, LIU J H, KANG D W, et al. Research on solid phase synthesis of graphite phase carbon nitride materials and electrochemical energy storage[J]. Journal of Inner Mongolia Minzu University (Natural Sciences), 2021, 36(1): 1⁃6.
|
14 |
LI C, CAO C B, ZHU H S, et al. Electrodeposition route to prepare graphite⁃like carbon nitride[J]. Materials Science and Engineering: B, 2004, 106(3): 308⁃312.
|
15 |
黄莹. 溶剂热法制备高比表面积氮化碳及其对盐酸四环素的光降解性能研究[D]. 南宁: 广西大学, 2021.
|
16 |
CUI Y J, DING Z X, FU X Z, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie International Edition, 2012, 51(47): 11814⁃11818.
|
17 |
GUO Q X, XIE Y, WANG X J, et al. Characterization of well⁃crystallized graphitic carbon nitride nanocrystallites via a benzene⁃thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380(1⁃2): 84⁃87.
|
18 |
CAO C B, HUANG F L, CAO C T, et al. Synthesis of carbon nitride nanotubes via a catalytic⁃assembly solvothermal route[J]. Chemistry of Materials, 2004, 16(25): 5213⁃5215.
|
19 |
HU C, CHU Y C, WANG M S, et al. Rapid synthesis of g⁃C3N4 spheres using microwave⁃assisted solvothermal method for enhanced photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348: 8⁃17.
|
20 |
GROENEWOLT M, ANTONIETTI M. Synthesis of g⁃C3N4 nanoparticles in mesoporous silica host matrices[J]. Advanced Materials, 2005, 17(14): 1789⁃1792.
|
21 |
梁家驰, 李昕奇, 左建良, 等. 石墨相氮化碳形貌调控及其光催化性能研究[J]. 化工新型材料, 2022, 50(8): 223⁃228.
|
|
LIANG J C, LI X Q, ZUO J L, et al. Morphology control of g⁃C3N4 with improved photocatalytic performance[J]. New Chemical Materials, 2022, 50(8): 223⁃228.
|
22 |
HONG J D, XIA X Y, WANG Y S, et al. Mesoporous carbon nitride with in situSulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006⁃15012.
|
23 |
WANG M, GUO P Y, ZHANG Y, et al. Synthesis of hollow lantern⁃like Eu(Ⅲ)⁃doped g⁃C3N4 with enhanced visible light photocatalytic perfomance for organic degradation[J]. Journal of Hazardous Materials, 2018, 349: 224⁃233.
|
24 |
周杰, 包妍, 朱蓓蓓, 等. 石墨相氮化碳的单金属掺杂改性研究进展[J]. 石油化工, 2023, 52(2): 253⁃263.
|
|
ZHOU J, BAO Y, ZHU B B, et al. Research progress on single metal doping modification of graphite⁃like carbon nitride[J]. Petrochemical Technology, 2023, 52(2): 253⁃263.
|
25 |
赵法军, 刘灏亮, 张新宇, 等. 稠油水热裂解中的金属纳米粒子催化剂研究进展[J]. 油田化学, 2017, 34(3): 567⁃570.
|
|
ZHAO F J, LIU H L, ZHANG X Y, et al. Catalysts of metal nano⁃particles for aquathermolysis of heavy crude oil[J]. Oilfield Chemistry, 2017, 34(3): 567⁃570.
|
26 |
JUN Y S, HONG W H, ANTONIETTI M, et al. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites[J]. Advanced Materials, 2009, 21(42): 4270⁃4274.
|
27 |
YULIATI L, YANG J H, WANG X C, et al. Highly active tantalum(v) nitridenanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation[J]. Journal of Materials Chemistry, 2010, 20(21): 4295⁃4298.
|
28 |
FISCHER A, MÜLLER J O, ANTONIETTI M, et al. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template[J]. ACS Nano, 2008, 2(12): 2489⁃2496.
|
29 |
KIM M, HWANG S, YU J S. Novel ordered nanoporous graphitic C3N4 as a support for Pt⁃Ru anode catalyst in direct methanol fuel cell[J]. Journal of Materials Chemistry, 2007, 17(17): 1656⁃1659.
|
30 |
WANG Y, YAO J, LI H R, et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. Journal of the American Chemical Society, 2011, 133(8): 2362⁃2365.
|
31 |
SAI KRISHNA K, PAVAN KUMAR B V V S, ESWARAMOORTHY M. Nanopillar arrays of amorphous carbon nitride[J]. Chemical Physics Letters, 2011, 511(1⁃3): 87⁃90.
|
32 |
HAQUE E, JUN J W, TALAPANENI S N, et al. Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol[J]. Journal of Materials Chemistry, 2010, 20(48): 10801⁃10803.
|
33 |
LEE E Z, JUN Y S, HONG W H, et al. Cubic mesoporous graphitic carbon(Ⅳ) nitride: An all⁃in⁃one chemosensor for selective optical sensing of metal ions[J]. Angewandte Chemie International Edition, 2010, 49(50): 9706⁃9710.
|
34 |
LEE E Z, LEE S U, HEO N S, et al. A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon(Ⅳ) nitride[J]. Chemical Communications, 2012, 48(33): 3942⁃3944.
|
35 |
CHENG C M, HUANG Y, TIAN X Q, et al. Electrogenerated chemiluminescence behavior of graphite⁃like carbon nitride and its application in selective sensing Cu2+[J]. Analytical Chemistry, 2012, 84(11): 4754⁃4759.
|
36 |
段其彤, 徐笑竹, 杨婷, 等. 超分散石墨相氮化碳纳米片的制备及其在抗坏血酸传感检测中的应用研究[J]. 中国科技论文在线精品论文, 2022, 15(4): 514⁃522.
|
|
DUAN Q T, XU X Z, YANG T, et al. Preparation of ultra⁃dispersed graphitic carbon nitride nanosheets for the biosensing of ascorbic acid[J]. Highlights of Sciencepaper Online, 2022, 15(4): 514⁃522.
|
37 |
YANG S B, FENG X L, WANG X C, et al. Graphene⁃based carbon nitride nanosheets as efficient metal⁃free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339⁃5343.
|
38 |
毛素华, 方岩雄, 李栋, 等. 石墨相氮化碳改性及其在电化学能源转换和储存中的应用[J]. 现代化工, 2021, 41(4): 17⁃21.
|
|
MAO S H, FANG Y X, LI D, et al. Modification of graphite phase carbon nitride and its application in electrochemical energy conversion and storage[J]. Modern Chemical Industry, 2021, 41(4): 17⁃21.
|
39 |
GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal⁃free catalyst for friedel⁃crafts reaction of benzene[J]. Angewandte Chemie International Edition, 2006, 45(27): 4467⁃4471.
|
40 |
ZHANG J S, CHEN X F, TAKANABE K, et al. Synthesis of a carbon nitride structure for visible⁃light catalysis by copolymerization[J]. Angewandte Chemie International Edition, 2010, 49(2): 441⁃444.
|
41 |
ZHANG J S, ZHANG M W, SUN R Q, et al. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions[J]. Angewandte Chemie International Edition, 2012, 51(40): 10145⁃10149.
|
42 |
ZHANG J S, SUN J H, MAEDA K, et al. Sulfur⁃mediated synthesis of carbon nitride: Band⁃gap engineering and improved functions for photocatalysis[J]. Energy & Environmental Science, 2011, 4(3): 675⁃678.
|
43 |
ZHANG J S, ZHANG M W, LIN S, et al. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity[J]. Journal of Catalysis, 2014, 310: 24⁃30.
|
44 |
ZHANG J S, GRZELCZAK M, HOU Y D, et al. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements[J]. Chemical Science, 2012, 3(2): 443⁃446.
|
45 |
ZHANG J S, ZHANG M W, ZHANG G G, et al. Synthesis of carbon nitride semiconductors in Sulfur flux for water photoredox catalysis[J]. ACS Catalysis, 2012, 2(6): 940⁃948.
|
46 |
WANG X L, MA K, GUO L H, et al. Catalytic performance for hydrogen production through steam reforming of dimethyl ether over silica supported copper catalysts synthesized by ammonia evaporation method[J]. Acta Physico⁃Chimica Sinica, 2017, 33(8): 1699⁃1708.
|
47 |
袁瀚钦, 董雯, 吴兴良, 等. 改性石墨相氮化碳活化过硫酸盐降解水中有机污染物的研究进展[J]. 化工环保, 2022, 42(6): 645⁃653.
|
|
YUAN H Q, DONG W, WU X L, et al. Research progress of modified graphitic carbon nitride activating persulfate for degradation of organic pollutants in water[J]. Environmental Protection of Chemical Industry, 2022, 42(6): 645⁃653.
|
48 |
CHEN X B, SHEN S H, GUO L J, et al. Semiconductor⁃based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503⁃6570.
|