1 |
吴倩. 原油管道运行能耗统计分析与预测[D].北京:中国石油大学(北京),2012.
|
2 |
Zeng C L,Wu C C,Zuo L L,et al.Predicting energy consumption of multiproduct pipeline using artificial neural networks[J].Energy,2014,66:791⁃798.
|
3 |
王立志,慕晓冬,刘宏岚.采用改进粒子群优化的SVM方法实现中文文本情感分类[J].计算机科学,2020,47(1):231⁃236.
|
|
Wang L Z,Mu X D,Liu H L.Using SVM method optimized by improved particle swarm optimization to analyze emotion of Chinese text[J].Computer Science,2020,47(1):231⁃236.
|
4 |
陶文华,袁正波.焦炭质量的DE⁃BP神经网络预测模型研究[J].系统仿真学报,2018,30(5):1650⁃1656.
|
|
Tao W H,Yuan Z B.Prediction model of coke quality based on DE⁃BP neural network[J].Journal of System Simulation,2018,30(5):1650⁃1656.
|
5 |
唐承娥.基于交变粒子群BP网络的电力系统短期负荷预测[J].计算机科学,2017,44(11A):133⁃135.
|
|
Tang C E.Short⁃term load forecasting of power system based on alternating particle swarm BP network[J].Computer Science,2017,44(11A):133⁃135.
|
6 |
Eseve A T,Zhang J,Zheng D.Short⁃term photovoltaic solar power forecasting using a hybrid Wavelet⁃PSO⁃SVM model based on SCADA and meteorological information[J].Renewable Energy,2018,118:357⁃367.
|
7 |
Zhang F,Deb C,Lee S E,et al.Time series forecasting for building energy consumption using weighted support vector regression with differential evolution optimization technique[J].Energy and Buildings,2016,126(2):94⁃103.
|
8 |
吕楠,姚平喜.基于BP神经网络的滚动轴承故障诊断[J].煤矿机械,2020,41(8):172⁃173.
|
|
Lü N,Yao P X.Fault diagnosis of rolling bearing based on BP neural network[J].Coal Mine Machinery,2020,41(8):172⁃173.
|
9 |
黄军,孟凡顺,张旭,等.基于PCA的遗传神经网络在套损预测中的应用[J].西安石油大学学报(自然科学版),2018,33(6):84⁃89.
|
|
Huang J,Meng F S,Zhang X,et al.Application of genetic neural network based on PCA in prediction of casing damage[J].Journal of Xi'an Shiyou University(Natural Science Edition),2018,33(6):84⁃89.
|
10 |
Rabi J,Balusamy T,Jawahar R R.Analysis of vibration signal responses on pre induced tunnel defects in friction stir welding using wavelet transform and empirical mode decomposition[J].Defence Technology,2019,15(6):885⁃896.
|
11 |
Wang L M,Shao Y M.Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis[J].Mechanical Systems and Signal Processing,2020,138:106545.
|
12 |
Zhang W,Qu Z,Zhang K,et al.A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting[J].Energy Conversion and Management,2017,136(1):439⁃451.
|
13 |
郑伟博.粒子群优化算法的改进及其应用研究[D].青岛:青岛大学,2016.
|
14 |
Li J,Li Q.Medium term electricity load forecasting based on CEEMDAN⁃permutation entropy and ESN with leaky integrator neurons[J].Electric Machines and Control,2015,19(8):70⁃80.
|
15 |
周闯,孙铁,张素香.AHP⁃模糊数学的风机机组与管网系统能耗评价[J].辽宁石油化工大学学报,2019,39(3):64⁃69.
|
|
Zhou C,Sun T,Zhang S X.Energy consumption evaluation method of bower unit basedon AHP⁃fuzzy mathematics[J].Journal of Liaoning Shihua University,2019,39(3):64⁃69.
|
16 |
侯磊,许新裕,崔金山,等.基于BP神经网络的输油管道能耗预测方法[J].节能技术,2009,27(5):401⁃406.
|
|
Hou L,Xu X Y,Cui J S,et al.A prediction method of energy consumption for oil pipeline based on BP neural network[J].Energy Conservation Technology,2009,27(5):401⁃407.
|
17 |
华东阳,王寿喜,郭乔,等.基于粒子群算法的液体管道仿真模型参数校正方法[J].油气储运,2020,39(12):1386⁃1393.
|
|
Hua D R,Wang S X,Guo Q,et al.Correction method for parameters of liquid pipeline simulation model based on particle swarm optimization algorithm[J].Oil & Gas Storage and Transportation,2020,39(12):1386⁃1393.
|