石油化工高等学校学报

石油化工高等学校学报 ›› 2011, Vol. 24 ›› Issue (1): 26-29.DOI: 10.3696/j.issn.1006-396X.2011.01.006

• 石油化工 • 上一篇    下一篇

人工神经网络方法对卤代联苯化合物的QSRR研究

张晓彤1,2,国晶晶1,任创1,宋丽娟1* ,孙挺2   

  1. 1.辽宁石油化工大学辽宁省石油化工重点实验室,辽宁抚顺113001;2.东北大学理学院,辽宁沈阳110004
  • 收稿日期:2010-12-02 修回日期:2010-12-28 出版日期:2011-02-25 发布日期:2011-02-25
  • 作者简介:张晓彤(1970-),男,辽宁抚顺市,副教授,在读博士
  • 基金资助:
    辽宁省教育厅资助项目(2008T110)

QSRR Study for Polyhalogenated Biphenyls Using Artificial Neural Network

  1. 1.Liaoning Key Laboratory of Petrochemical Engineering, Liaoning Shihua University, Fushun Liaoning 113001,P,R.China;
    2.College of Sciences,Northeastern University,Shenyang Liaoning 110004,P.R.China
  • Received:2010-12-02 Revised:2010-12-28 Published:2011-02-25 Online:2011-02-25

摘要: 将卤代联苯化合物作为研究体系,利用基于原子类型的电子拓扑结构(E-state)和基于13种原子类型的电性距离矢量描述子(MEDV-13)作为描述符,分别应用多元线性回归、人工神经网络中的误差反向传播神经网络和径向基函数神经网络的方法建立了55种卤代联苯化合物的QSRR模型。使用人工神经网络的方法预测的结果比多元线性回归的方法的结果稍好,相关系数R可以达到0.99以上,说明使用人工神经网络的方法能够准确地预测卤代联苯化合物的气相色谱和液相色谱的保留指数。

关键词: QSRR , 卤代联苯化合物 , 多元线性回归 , 人工神经网络

Abstract: A series of polyhalogenated biphenyls have been used to develop quantitative structure-retention relationship for their gas and liquid chromatographic retention index by using two 2D descriptors of the atom type electrotopogical state index and the molecular electronegativity distance vector based on 13 atomic types. QSRR of 55 kinds of polyhalogenated biphenyls models were built by multiple liner regression and artificial neural network. The results show that using artificial neural network method is better than [KG*4]using [KG*4]multivariate [KG*4]linear [KG*4]regression, the [KG*4]predictive [KG*4]correlation [KG*4]coefficient R can reach above 0.99. It is demonstrated that using artificial neural network method can accurately predict polyhalogenated biphenyls gas and liquid chromatographic retention index.

Key words: Quantitative structure-retention relationship, Polyhalogenated biphenyls, Multiple liner regression, Artificial neural network

引用本文

张晓彤,国晶晶,任创. 人工神经网络方法对卤代联苯化合物的QSRR研究[J]. 石油化工高等学校学报, 2011, 24(1): 26-29.

ZHANG Xiao-tong,GUO Jing-jing,REN Chuang,et al. QSRR Study for Polyhalogenated Biphenyls Using Artificial Neural Network[J]. Journal of Petrochemical Universities, 2011, 24(1): 26-29.

使用本文