1 |
王铮. 商业钒钛基SCR脱硝催化剂的改性研究[J].化工管理, 2020 (34): 139⁃140.
|
|
Wang Z.Research on modification of commercial vanadium titanium based SCR catalyst[J].Chemical Enterprise Management, 2020 (34): 139⁃140.
|
2 |
He G Z, Lian Z H, Yu Y B, et al. Polymeric vanadyl species determine the low⁃temperature activity of V⁃based catalysts for the SCR of NOx with NH3[J]. Science Advances, 2018, 4: 4637.
|
3 |
Chen H F, Xia Y, Fang R Y, et al. The effects of tungsten and hydrothermal aging in promoting NH3⁃SCR activity on V2O5/WO3⁃TiO2 catalysts[J]. Applied Surface Science, 2018, 459: 639⁃646.
|
4 |
Zhao W, Zhong Q, Pan Y X, et al. Defect structure and evolution mechanism of O2 radical in F⁃doped V2O5/TiO2 catalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 1013⁃1020.
|
5 |
Zhao W, Zhong Q, Pan Y X, et al. Systematic effects of S⁃doping on the activity of V2O5/TiO2 catalyst for low⁃temperature NH3⁃SCR[J]. Chemical Engineering Journal, 2013, 228: 815⁃823.
|
6 |
刘庆航, 晏乃强, 翟赞, 等. 溴掺杂钒钛催化剂SCR反应动力学研究[J]. 高等化学工程学报, 2017, 31(5): 1193⁃1200.
|
|
Liu Q H, Yan N Q, Qu Z,et al.Kinetic study on selective catalytic reduction of NOx by Br⁃doped V2O5/TiO2 catalysts[J].Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1193⁃1200.
|
7 |
Shi A J, Wang X Q, Yu T, et al. The effect of zirconia additive on the activity and structure stability of V2O5/WO3⁃TiO2 ammonia SCR catalysts[J]. Applied Catalysis B: Environmental, 2011, 106: 359⁃369.
|
8 |
Wang X M, Du X S, Yang G P, et al. Chemisorption of NO2 on V⁃Based SCR Catalysts: A fundamental study toward the mechanism of "Fast SCR" reaction[J]. The Journal of Physical Chemistry C, 2019, 123: 20451⁃20458.
|
9 |
Marberger A, Ferri D, Rentsch D, et al. Effect of SiO2 on co⁃impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2019, 320: 123⁃132.
|
10 |
Yang B, Zhou J B, Wang W W, et al. Extraction and separation of tungsten and vanadium from spent V2O5⁃WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124963.
|
11 |
Won J M, Kim M S, Hong S C. The cause of deactivation of VOx/TiO2 catalyst by thermal effect and the role of tungsten addition[J]. Chemical Engineering Science, 2021, 229: 116068.
|
12 |
Zhang S L, Zhong Q. Promotional effect of WO3 on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Journal of Molecular Catalysis A: Chemical, 2013, 373: 108⁃113.
|
13 |
Zhang S L, Zhong Q. Surface characterization studies on the interaction of V2O5⁃WO3/TiO2 catalyst for low temperature SCR of NO with NH3[J]. Journal of Solid State Chemistry, 2015, 221: 49⁃56.
|
14 |
Li Q C, Chen S F, Liu Z Y, et al. Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2015, 164: 475⁃482.
|
15 |
Qing M X, Su S, Qian K, et al. Insight into the catalytic performance and NH3 adsorption under high concentration of CO2 and/or H2O conditions on selective catalytic reduction of NO by NH3 over V2O5⁃WO3/TiO2 catalyst[J]. Fuel, 2021, 286: 119478.
|
16 |
Kwon D W, Lee S, Kim J, et al. Influence of support composition on enhancing the performance of Ce⁃V on TiO2 comprised tungsten⁃silica for NH3⁃SCR[J]. Catalysis Today, 2021, 359: 112⁃123.
|
17 |
Liu X S, Chen X Y. A visible light response TiO2 photocatalyst realized by cationic S⁃doping and its application for phenol degradation[J]. Journal of Hazardous Materials, 2008, 152: 48⁃55.
|
18 |
Arfaoui J, Ghorbel A, Petitto C, et al. Novel V2O5⁃CeO2⁃TiO2⁃SO42- nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2[J]. Applied Catalysis B: Environmental, 2018, 224: 264⁃275.
|
19 |
Besselmann S, Loffler E, Muhler M, et al. On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: A Raman and in situ DRIFTS study[J]. Journal of Molecular Catalysis A: Chemical, 2000, 162: 401⁃411.
|
20 |
Zhao W, Zhang K, Wu L C, et al. Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3[J]. Journal of Colloid and Interface Science, 2021, 581: 76⁃83.
|
21 |
Chen M Q, Hu J X, Wang Y S, et al. Hydrogen production from acetic acid steam reforming over Ti⁃modified Ni/Attapulgite catalysts[J]. International Journal of Hydrogen Energy, 2021, 46: 3651⁃3668.
|
22 |
Si W Z, Liu H Y, Yan T, et al. Sn⁃doped rutile TiO2 for vanadyl catalysts: Improvements on activity and stability in SCR reaction[J].Applied Catalysis B: Environmental, 2020, 269: 118797.
|
23 |
Cheng J, Song Y, Ye Q, et al. A mechanistic investigation on the selective catalytic reduction of NO with ammonia over the V⁃Ce/Ti⁃PILC catalysts[J]. Molecular Catalysis, 2018, 445: 111⁃123.
|
24 |
Li H L, Qiu L, Bharti B, et al. Efficient photocatalytic degradation of acrylonitrile by sulfur⁃bismuth co⁃doped F⁃TiO2/SiO2 nanopowder[J]. Chemosphere, 2020, 249: 126135.
|
25 |
Li H Y, Zhang S L, Zhong Q, et al. Effect of nitrogen doping on oxygen vacancies of titanium dioxide supported vanadium pentoxide for ammonia⁃SCR reaction at low temperature[J]. Journal of Colloid and Interface Science, 2013, 402: 190⁃195.
|
26 |
Li F K, Shen B X, Tian L H, et al. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5⁃WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica[J]. Powder Technology, 2016, 297: 384⁃391.
|
27 |
Wang X, Du X, Yang G, et al. Chemisorption of NO2 on V⁃Based SCR catalysts: A fundamental study toward the mechanism of “Fast SCR” reaction[J]. The Journal of Physical Chemistry C,2019,123(33):20451⁃20458.
|