石油化工高等学校学报 ›› 2023, Vol. 36 ›› Issue (6): 24-35.DOI: 10.12422/j.issn.1006-396X.2023.06.003
收稿日期:
2023-10-09
修回日期:
2023-11-08
出版日期:
2023-12-25
发布日期:
2024-01-03
通讯作者:
潘建明
作者简介:
白雪(1993⁃),女,博士,讲师,从事功能化吸附剂的制备及其分离方面的研究;E⁃mail:xue.bai.17@stmail.ujs.edu.cn。
基金资助:
Xue BAI1,2(), Jianming PAN2(
)
Received:
2023-10-09
Revised:
2023-11-08
Published:
2023-12-25
Online:
2024-01-03
Contact:
Jianming PAN
摘要:
控制化石能源的使用、促进可替代新能源和清洁能源的发展,符合资源开发与环境保护协同发展的主题。核能作为一种能量密度高的绿色能源,其广泛应用可缓解我国的能源短缺问题。已探明的海水中铀资源约为陆地铀矿的1 000倍,海水提铀是确保铀资源长期供应及核能可持续发展的潜在方法。吸附法因吸附效率高、操作简单、成本低和绿色环保等优点成为海水中铀酰离子提取的有效方法之一,但面临诸多挑战,如海水中铀酰离子的浓度极低且以Ca2UO2(CO3)3或[UO2(CO3)3]4-的形式稳定存在、共存离子种类和数量较多等。因此,制备高性能吸附剂是实现海水提铀的关键。综述了海水提铀吸附剂的类型及其性能强化策略,以期设计海水提铀吸附剂提供帮助。
中图分类号:
白雪, 潘建明. 吸附法提铀及提铀吸附剂的种类和性能强化策略[J]. 石油化工高等学校学报, 2023, 36(6): 24-35.
Xue BAI, Jianming PAN. Uranium Extraction by Adsorption and the Types and Performance Enhancement Strategies for Adsorbents[J]. Journal of Petrochemical Universities, 2023, 36(6): 24-35.
类型 | 名称 | 吸附条件 | 吸附量/(mg·g-1) | 参考文献 |
---|---|---|---|---|
无机型 | NZVI/TiO2 | m/V=0.2 g/L,pH=7.0,t=2.0 h | 122.30 | [ |
Mn3O4@sepiolite | m=50.0 mg,V=50.0 mL,pH=6.0,t=1.0 h | 85.51 | [ | |
PCNF | m=10.0 mg,V=20.0 mL,pH=6.0,t=2.0 h | 512.80 | [ | |
SrTiO3/TiO2 | m=10.0 mg,V=10.0 mL,pH=4.0,t=3.0 h | 127.10 | [ | |
有机型 | PQAP | m=15.0 mg,V=5.0 L,pH=8.0,t=4.0 h | 559.30 | [ |
CID NFs | m=10.0 mg,V=1.0 L,pH=6.0,t=70.0 h | 342.50 | [ | |
GPNB⁃BT | m=20.0 mg,V=50.0 mL,pH=5.5,t=12.0 h | 170.00 | [ | |
CNFs aerogel | m=5.0 mg,V=100.0 mL,pH=5.0,t=3.0 h | 440.60 | [ | |
SAN⁃NFs | m=20.0 mg,V=100.0 mL,pH=4.0,t=4.5 h | 177.00 | [ | |
PA⁃PAO/CS NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=24.0 h | 913.10 | [ | |
BP@CNF⁃MOF | m=5.0 mg,V=1.0 L,pH=7.0,t=6.0 h | 858.30 | [ | |
PAO/Alg NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=48.0 h | 892.80 | [ | |
PPLA | m=15.0 mg,V=5.0 L,pH=5.0,t=50.0 h | 1 432.00 | [ | |
PP | m=30.0 mg,V=0.5 L,pH=4.0,t=1.0 h | 491.00 | [ | |
SMON⁃PAO | m=10.0 mg,V=5.0 L,pH=7.0,t=30.0 h | 1 089.00 | [ |
表1 近几年报道的纳米纤维基吸附剂及其提铀性能
Table 1 Nanofiber?based adsorbents and their uranium extraction properties reported in recent years
类型 | 名称 | 吸附条件 | 吸附量/(mg·g-1) | 参考文献 |
---|---|---|---|---|
无机型 | NZVI/TiO2 | m/V=0.2 g/L,pH=7.0,t=2.0 h | 122.30 | [ |
Mn3O4@sepiolite | m=50.0 mg,V=50.0 mL,pH=6.0,t=1.0 h | 85.51 | [ | |
PCNF | m=10.0 mg,V=20.0 mL,pH=6.0,t=2.0 h | 512.80 | [ | |
SrTiO3/TiO2 | m=10.0 mg,V=10.0 mL,pH=4.0,t=3.0 h | 127.10 | [ | |
有机型 | PQAP | m=15.0 mg,V=5.0 L,pH=8.0,t=4.0 h | 559.30 | [ |
CID NFs | m=10.0 mg,V=1.0 L,pH=6.0,t=70.0 h | 342.50 | [ | |
GPNB⁃BT | m=20.0 mg,V=50.0 mL,pH=5.5,t=12.0 h | 170.00 | [ | |
CNFs aerogel | m=5.0 mg,V=100.0 mL,pH=5.0,t=3.0 h | 440.60 | [ | |
SAN⁃NFs | m=20.0 mg,V=100.0 mL,pH=4.0,t=4.5 h | 177.00 | [ | |
PA⁃PAO/CS NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=24.0 h | 913.10 | [ | |
BP@CNF⁃MOF | m=5.0 mg,V=1.0 L,pH=7.0,t=6.0 h | 858.30 | [ | |
PAO/Alg NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=48.0 h | 892.80 | [ | |
PPLA | m=15.0 mg,V=5.0 L,pH=5.0,t=50.0 h | 1 432.00 | [ | |
PP | m=30.0 mg,V=0.5 L,pH=4.0,t=1.0 h | 491.00 | [ | |
SMON⁃PAO | m=10.0 mg,V=5.0 L,pH=7.0,t=30.0 h | 1 089.00 | [ |
名称 | 结构 | 吸附容量/(mg·g-1) | 最佳pH | 参考文献 |
---|---|---|---|---|
3, 5⁃二乙烯基苯腈 | ![]() | 440.00 | 6.0 | [ |
4⁃氨基⁃3, 5⁃二乙烯基苯腈 | ![]() | 580.00 | 6.0 | [ |
2⁃氨基⁃3, 5⁃二乙烯基苯腈 | ![]() | 530.00 | 6.0 | [ |
2⁃(3, 5⁃二乙烯基亚苄基)丙二腈 | ![]() | 857.00 | 6.0 | [ |
1⁃(3, 5⁃二溴苄基)⁃1H⁃咪唑⁃4, 5⁃二腈 | ![]() | 504.00 | 6.0 | [ |
2, 5⁃二乙烯基对苯二甲腈 | ![]() | 1 070.00 | 6.0 | [ |
表2 已报道的用于选择性提铀而设计合成的功能单体
Table 2 Reported monomers designed and synthesized for selective uranium extraction
名称 | 结构 | 吸附容量/(mg·g-1) | 最佳pH | 参考文献 |
---|---|---|---|---|
3, 5⁃二乙烯基苯腈 | ![]() | 440.00 | 6.0 | [ |
4⁃氨基⁃3, 5⁃二乙烯基苯腈 | ![]() | 580.00 | 6.0 | [ |
2⁃氨基⁃3, 5⁃二乙烯基苯腈 | ![]() | 530.00 | 6.0 | [ |
2⁃(3, 5⁃二乙烯基亚苄基)丙二腈 | ![]() | 857.00 | 6.0 | [ |
1⁃(3, 5⁃二溴苄基)⁃1H⁃咪唑⁃4, 5⁃二腈 | ![]() | 504.00 | 6.0 | [ |
2, 5⁃二乙烯基对苯二甲腈 | ![]() | 1 070.00 | 6.0 | [ |
1 | 宋学实, 曲微丽, 赵磊, 等. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25⁃33. |
SONG X S, QU W L, ZHAO L, et al. Research progress of Pt⁃based catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of Petrochemical Universities, 2023, 36(4): 25⁃33. | |
2 | 李强, 陈擎, 王继斌, 等. 世界铀资源现状与我国核电发展资源保障的对策建议[J]. 中国矿业, 2023, 32(3): 1⁃9. |
LI Q, CHEN Q, WANG J B, et al. Current situation of uranium resources in the world and suggestions on resource guarantee of nuclear power development in China[J]. China Mining Magazine, 2023, 32(3): 1⁃9. | |
3 | XIE Y, LIU Z Y, GENG Y Y, et al. Uranium extraction from seawater: Material design, emerging technologies and marine engineering[J]. Chemical Society Reviews, 2023, 52(1): 97⁃162. |
4 | 李林蔚, 朱博, 刘秀. 核能在我国清洁低碳能源系统中的战略定位研究[J]. 产业与科技论坛, 2022, 21(15): 12⁃15. |
LI L W, ZHU B, LIU X. Research on the strategic positioning of nuclear energy in China's clean and low carbon energy system[J]. Industrial & Science Tribune, 2022, 21(15): 12⁃15. | |
5 | KUSHWAHA S, PATEL K. Catalyst: Uranium extraction from seawater, a paradigm shift in resource recovery[J]. Chem, 2021, 7(2): 271⁃274. |
6 | 颜新林. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用[J]. 东北石油大学学报, 2018, 42(1): 40⁃48. |
YAN X L. Characteristics and uranium mineralization of upper Cretaceous diabase in Qianjiadian area, Songliao basin[J]. Journal of Northeast Petroleum University, 2018, 42(1): 40⁃48. | |
7 | GUO X J, CHEN R R, LIU Q, et al. Superhydrophilic phosphate and amide functionalized magnetic adsorbent: A new combination of anti⁃biofouling and uranium extraction from seawater[J]. Environmental Science: Nano, 2018, 5(10): 2346⁃2356. |
8 | SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435⁃437. |
9 | HAJI M N, DRYSDALE J A, BUESSELER K O, et al. Results of an ocean trial of the symbiotic machine for ocean uranium extraction[J]. Environmental Science & Technology, 2019, 53(4): 2229⁃2237. |
10 | 苏守政, 张杏, 何健, 等. 海水提铀材料制备的综合实验设计与探索[J]. 当代化工研究, 2023(7): 146⁃148. |
SU S Z, ZHANG X, HE J, et al. Comprehensive experimental design and exploration for the preparation of uranium extraction materials from seawater[J]. Modern Chemical Research, 2023(7): 146⁃148. | |
11 | ABNEY C W, MAYES R T, SAITO T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935⁃14013. |
12 | DAI S. Catalyst: Challenges in development of adsorbents for recovery of uranium from seawater[J]. Chem, 2021, 7(3): 537⁃539. |
13 | TANG N, LIANG J, NIU C G, et al. Amidoxime⁃based materials for uranium recovery and removal[J]. Journal of Materials Chemistry A, 2020, 8(16): 7588⁃7625. |
14 | 王培松, 于芳, 金宇, 等. 负载型Al(OH)3/SiO2的合成及对铀酰的吸附性能[J]. 辽宁石油化工大学学报, 2018, 38(6): 10⁃16. |
WANG P S, YU F, JIN Y, et al. Synthesis of supported Al(OH)3/SiO2 and its adsorption properties for uranyl[J]. Journal of Liaoning Shihua University, 2018, 38(6): 10⁃16. | |
15 | 朱成朋, 谢水波, 谭文发, 等. Al掺加赤铁矿去除水中U(Ⅵ)的机理研究[J]. 化工环保, 2022, 42(6): 693⁃699. |
ZHU C P, XIE S B, TAN W F, et al. Removal mechanism of U(Ⅵ) from aqueous solution by Al⁃doped hematite[J]. Environmental Protection of Chemical Industry, 2022, 42(6): 693⁃699. | |
16 | 刘泽宇, 谢忆, 王一凡, 等. 海水提铀材料研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 279⁃301. |
LIU Z Y, XIE Y, WANG Y F, et al. Recent advances in sorbent materials for uranium extraction from seawater[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4): 279⁃301. | |
17 | 冯健, 何桂强, 魏艳霞, 等. 海水提铀吸附材料研究进展[J]. 化工新型材料, 2022, 50(3): 1⁃7. |
FENG J, HE G Q, WEI Y X, et al. Research progress on adsorption material for U extraction from seawater[J]. New Chemical Materials, 2022, 50(3): 1⁃7. | |
18 | 黄晨, 毛承凯, 姚运友, 等. 海水提铀用偕胺肟基纤维吸附材料的研究进展[J]. 核化学与放射化学, 2022, 44(3): 246⁃264. |
HUANG C, MAO C K, YAO Y Y, et al. Research progress of amidoxime⁃based fiber for uranium extraction from seawater[J]. Journal of Nuclear and Radiochemistry, 2022, 44(3): 246⁃264. | |
19 | ZHAO Y G, LI J X, ZHAO L P, et al. Synthesis of amidoxime⁃functionalized Fe3O4@SiO2 core⁃shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chemical Engineering Journal, 2014, 235: 275⁃283. |
20 | 张建伟, 田波, 李金凤, 等. 偕胺肟基铀吸附材料研究进展[J]. 辐射研究与辐射工艺学报, 2023, 41(1): 1⁃15. |
ZHANG J W, TIAN B, LI J F, et al. Research progress of amidoxime uranium adsorption materials[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(1): 1⁃15. | |
21 | 朱雅静, 徐岩, 简美鹏, 等. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029⁃3048. |
ZHU Y J, XU Y, JIAN M P, et al. Progress of metal⁃organic frameworks for uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029⁃3048. | |
22 | BAI Z Y, LIU Q, ZHANG H S, et al. Anti⁃biofouling and water⁃stable balanced charged metal organic framework⁃based polyelectrolyte hydrogels for extracting uranium from seawater[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18012⁃18022. |
23 | CUI A Q, WU X Y, YE J B, et al. "Two⁃in⁃one" dual⁃function luminescent MOF hydrogel for onsite ultra⁃sensitive detection and efficient enrichment of radioactive uranium in water[J]. Journal of Hazardous Materials, 2023, 448: 130864. |
24 | CHEN L, HANG J H, CHEN B, et al. Photocatalytic uranium removal from basic effluent by porphyrin⁃Ni COF as the photocatalyst[J]. Chemical Engineering Journal, 2023, 454(Part 3): 140378. |
25 | 宋志强, 王玉高, 张宇姝, 等. 活性炭/金属有机骨架复合吸附材料的制备及其CH4/N2吸附分离性能研究[J]. 低碳化学与化工, 2023, 48(5): 163⁃169. |
SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on preparation of activated carbon/metal⁃organic frameworks composite adsorbent materials and their CH4/N2 adsorption and separation performance[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163⁃169. | |
26 | BAI C Y, ZHANG M C, LI B, et al. Modifiable diyne⁃based covalent organic framework: A versatile platform for in situ multipurpose functionalization[J]. RSC Advances, 2016, 6(45): 39150⁃39158. |
27 | CHEN Z S, WANG J Y, HAO M J, et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance[J]. Nature Communications, 2023, 14(1): 1106. |
28 | 郭帅帅, 陈锦路, 金梁程龙, 等. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426⁃1436. |
GUO S S, CHEN J L, JIN L C L, et al. Research progress of porous aromatic frameworks based on uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426⁃1436. | |
29 | LI Z N, MENG Q H, YANG Y J, et al. Constructing amidoxime⁃modified porous adsorbents with open architecture for cost⁃effective and efficient uranium extraction[J]. Chemical Science, 2020, 11(18): 4747⁃4752. |
30 | XU X, YUE Y R, CAI D, et al. Aqueous solution blow spinning of seawater⁃stable polyamidoxime nanofibers from water⁃soluble precursor for uranium extraction from seawater[J]. Small Methods, 2020, 4(12): 2000558. |
31 | ZHAO M, NIU Z W, XU Y, et al. One⁃step electrospinning preparation of magnetic NZVI@TiO2 nanofibers for enhanced immobilization of U(Ⅵ) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(4): 1083⁃1091. |
32 | YIN W, LIU M, CHEN Y Y, et al. Microwave⁃assisted preparation of Mn3O4@sepiolite nanocomposite for highly efficient removal of uranium[J]. Applied Clay Science, 2022, 228: 106597. |
33 | DHANYA V, ARUNRAJ B, RAJESH N. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water[J]. RSC Advances, 2022, 12(21): 13511⁃13522. |
34 | HU L, YAN X W, ZHANG X J, et al. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers[J]. Applied Surface Science, 2018, 428: 819⁃824. |
35 | LYU H L, HAN Y, ZHANG R, et al. Anti⁃biofouling multi⁃modified chitosan/polyvinylalcohol air⁃blown nanofibers for selective radionuclide capture in wastewater[J]. Separation and Purification Technology, 2022, 303: 122196. |
36 | HUANG C, XU L, XU X, et al. Highly amidoxime utilization ratio of porous poly(cyclic imide dioxime) nanofiber for effective uranium extraction from seawater[J]. Chemical Engineering Journal, 2022, 443: 136312. |
37 | MENG J, LIN X Y, ZHOU J, et al. Preparation of tannin⁃immobilized gelatin/PVA nanofiber band for extraction of uranium (Ⅵ) from simulated seawater[J]. Ecotoxicology and Environmental Safety, 2019, 170: 9⁃17. |
38 | WANG Y, LI Y X, ZHANG Y P, et al. Nanocellulose aerogel for highly efficient adsorption of uranium(Ⅵ) from aqueous solution[J]. Carbohydrate Polymers, 2021, 267: 118233. |
39 | ROSTAMIAN R, FIROUZZARE M, ZAHAKIFAR F. Preparation and evaluation of amidoximated poly(styrene⁃acrylonitrile) nanofibers for uranium adsorption from aqueous solutions[J]. Journal of Polymer Research, 2021, 28(5): 193. |
40 | WANG D, LIU Z, YUE Y, et al. Blow spinning of pre⁃acid⁃activated polyamidoxime nanofibers for efficient uranium adsorption from seawater[J]. Materials Today Energy, 2021, 21: 100735. |
41 | CHEN M W, LIU T, ZHANG X B, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, 31(22): 2100106. |
42 | LI Z, YU Z Q, WU Y D, et al. Self⁃sterilizing diblock polycation⁃enhanced polyamidoxime shape⁃stable blow⁃spun nanofibers for high⁃performance uranium capture from seawater[J]. Chemical Engineering Journal, 2020, 390: 124648. |
43 | ASHRAFI F, FIROUZZARE M, AHMADI S J, et al. Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium(Ⅵ) from simulated seawater[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109746. |
44 | YUAN Y H, ZHAO S L, WEN J, et al. Rational design of porous nanofiber adsorbent by blow⁃spinning with ultrahigh uranium recovery capacity from seawater[J]. Advanced Functional Materials, 2019, 29(2): 1805380. |
45 | YUAN Y H, LIU T T, XIAO J X, et al. DNA nano⁃pocket for ultra⁃selective uranyl extraction from seawater[J]. Nature Communications, 2020, 11(1): 5708. |
46 | ZHANG W H, XU C L, CHE X P, et al. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions[J]. ACS Nano, 2022, 16(8): 13144⁃13151. |
47 | VUKOVIC S, WATSON L A, KANG S O, et al. How amidoximate binds the uranyl cation[J]. Inorganic Chemistry, 2012, 51(6): 3855⁃3859. |
48 | YANG P P, CHEN R R, LIU Q, et al. The efficient immobilization of uranium(Ⅵ) by modified dendritic fibrous nanosilica (DFNS) using mussel bioglue[J]. Inorganic Chemistry Frontiers, 2019, 6(3): 746⁃755. |
49 | CHEN B, HONG S, DAI X, et al. Invivo uranium decorporation by a tailor⁃made hexadentate ligand[J]. Journal of the American Chemical Society, 2022, 144(25): 11054⁃11058. |
50 | SUN Q, AGUILA B, PERMAN J, et al. Bio⁃inspired nano⁃traps for uranium extraction from seawater and recovery from nuclear waste[J]. Nature Communications, 2018, 9(1): 1644. |
51 | SONG Y P, ZHU C J, SUN Q, et al. Nanospace decoration with uranyl⁃specific "hooks" for selective uranium extraction from seawater with ultrahigh enrichment index[J]. ACS Central Science, 2021, 7(10): 1650⁃1656. |
52 | ZHU L E, ZHANG C H, QIN F F, et al. Amidoxime⁃modified hypercrosslinked porous poly(styrene⁃co⁃acrylonitrile) adsorbent with tunable porous structure for extracting uranium efficiently from seawater[J]. Journal of Molecular Liquids, 2022, 368(Part B): 120741. |
53 | GUO X L, SHANG Y, LIANG X L, et al. A comparison of Ni⁃Co layered double oxides with memory effect on recovering U(Ⅵ) from wastewater to hydroxides[J]. Chemical Engineering Journal, 2022, 446(Part 4): 137220. |
54 | OYOLA Y, JANKE C J, DAI S, et al. Synthesis, development, and testing of high⁃surface⁃area polymer⁃based adsorbents for the selective recovery of uranium from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4149⁃4160. |
55 | OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime⁃group⁃containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology, 1985, 20(2/3): 163⁃178. |
56 | YU R, ZHANG X S, LU Y R, et al. Advanced amidoximated polyethylene nanofibrous membranes for practical uranium extraction from seawater[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12307⁃12318. |
57 | MATYJASZEWSKI K, JO S M, PAIK H J, et al. An investigation into the CuX/2,2′⁃bipyridine (X=Br or Cl) mediated atom transfer radical polymerization of acrylonitrile[J]. Macromolecules, 1999, 32(20): 6431⁃6438. |
58 | CUTHBERT J, WANASINGHE S V, MATYJASZEWSKI K, et al. Are RAFT and ATRP universally interchangeable polymerization methods in network formation?[J]. Macromolecules, 2021, 54(18): 8331⁃8340. |
59 | SAITO T, BROWN S, CHATTERJEE S, et al. Uranium recovery from seawater: Development of fiber adsorbents prepared via atom⁃transfer radical polymerization[J]. Journal of Materials Chemistry A, 2014, 2(35): 14674⁃14681. |
60 | HUANG L, ZHANG L X, HUA D B. Synthesis of polyamidoxime⁃functionalized nanoparticles for uranium(Ⅵ) removal from neutral aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305(2): 445⁃453. |
61 | XU X, XU L, AO J X, et al. Ultrahigh and economical uranium extraction from seawater via interconnected open⁃pore architecture poly(amidoxime) fiber[J]. Journal of Materials Chemistry A, 2020, 8(42): 22032⁃22044. |
62 | XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(6): 1979⁃1988. |
63 | HIROTSU T, KATOH S, SUGASAKA K, et al. Adsorption of uranium on cross⁃linked amidoxime polymer from seawater[J]. Industrial & Engineering Chemistry Research, 1987, 26(10): 1970⁃1977. |
[1] | 孙二强, 姜永健, 张环宇, 王昭旭, 赵凤阳, 雷良才. 相转化法制备疏松纳滤膜研究进展[J]. 石油化工高等学校学报, 2022, 35(1): 41-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发