石油化工高等学校学报 ›› 2023, Vol. 36 ›› Issue (5): 1-14.DOI: 10.12422/j.issn.1006-396X.2023.05.001
杜坤1,2(), 郭佳欣2, 马紫昂2, 毛晶2, 凌涛2(), 赵巍1()
收稿日期:
2023-05-21
修回日期:
2023-09-22
出版日期:
2023-10-25
发布日期:
2023-11-06
通讯作者:
凌涛,赵巍
作者简介:
杜坤(1988⁃),女,博士,讲师,从事能源催化材料方面的研究;E⁃mail:dukun0828@tcu.edu.cn。
基金资助:
Kun DU1,2(), Jiaxin GUO2, Ziang MA2, Jing MAO2, Tao LING2(), Wei ZHAO1()
Received:
2023-05-21
Revised:
2023-09-22
Published:
2023-10-25
Online:
2023-11-06
Contact:
Tao LING, Wei ZHAO
摘要:
清洁和可再生能源技术的发展被视为解决能源和环境问题的关键。电催化分解水过程中的析氧反应(OER)在太阳能和风能等间歇式能源存储方面发挥着关键作用。环境友好的中性环境下的OER受到了很大的关注,然而其电解水析氧效率远低于在碱性或酸性条件下电解水析氧效率。基于此,首先概括了目前研究者对中性环境下OER机理的认识;介绍了几种重要的原位跟踪OER电催化过程的表征技术,并概述了包括Co基、Ni基和Mn基等中性环境下的OER催化材料;最后,对促进中性环境下电催化分解水OER面临的挑战进行了总结,并提出了可能的解决策略。
中图分类号:
杜坤, 郭佳欣, 马紫昂, 毛晶, 凌涛, 赵巍. 中性环境下电催化析氧反应研究进展[J]. 石油化工高等学校学报, 2023, 36(5): 1-14.
Kun DU, Jiaxin GUO, Ziang MA, Jing MAO, Tao LING, Wei ZHAO. Progress in Electrocatalytic Oxygen Precipitation Reaction under Neutral Environment[J]. Journal of Petrochemical Universities, 2023, 36(5): 1-14.
催化剂 | 形貌 | pH | 电解质 | 电流密度/(mA· cm-2) | η /mV | Tafel 斜率/ (mV· dec-1) | 参考文献 | |
---|---|---|---|---|---|---|---|---|
Co基 | Co⁃Pi | 薄膜 | 7.0 | KPi | 1.0 | 410 | 60.0 | [ |
Co⁃Bi | 纳米片 | 7.0 | PBS | 14.4 | 570 | 160.0 | [ | |
Co⁃Bi | 纳米片 | 9.2 | KBi | 10.0 | 469 | 138.0 | [ | |
Mn⁃Co⁃Bi | 纳米线 | 9.2 | KBi | 10.0 | 366 | 193.0 | [ | |
Ni⁃Co⁃Bi | 纳米线 | 9.2 | KBi | 10.0 | 388 | 142.0 | [ | |
Co3O4 | 纳米链 | 7.0 | KBi | 1.0 | 385 | 70.0 | [ | |
Co3O4 | 纳米颗粒 | 7.0 | KPi | 10.0 | 390 | - | [ | |
CoO x H y | 纳米片阵列 | 7.0 | PBS | 10.0 | 430 | 121.0 | [ | |
IrO x /CoO x | 纳米颗粒 | 7.0 | PBS | 1.0 | 220 | 29.0 | [ | |
CoIr | 纳米片 | 7.0 | PBS | 10.0 | 373 | 117.0 | [ | |
Co3S4 | 纳米片 | 7.0 | PBS | 起始过电势 | 310 | 151.0 | [ | |
CoS4.6O0.6 | 多孔纳米管 | 7.0 | PBS | 起始过电势 | 270 | 164.0 | [ | |
Na2CoP2O7 | 块体 | 7.0 | PBS | 1.0 | 560 | 80.0 | [ | |
Co2P | 纳米颗粒 | 7.0 | PBS | 起始过电势 | 320 | 129.8 | [ | |
Ni0.1Co0.9P | 多孔纳米片 | 7.0 | PBS | 起始过电势 | 250 | 133.0 | [ | |
Co1⁃x Fe x P | 纳米片 | 7.0 | PBS | 10.0 | 500 | - | [ | |
Ni基 | NiCoFeP | - | 7.2 | KHCO3 | 10.0 | 330 | - | [ |
Ni⁃Bi | 纳米阵列 | 9.2 | KBi | 10.0 | 470 | 107.0 | [ | |
Nickel | - | 9.2 | KBi | 1.0 | 540 | 57.0 | [ | |
NiFeO x | - | 7.0 | PBS | 10.0 | 400 | - | [ | |
S⁃doped NiFe2O4 | 纳米片 | 7.4 | PBS | 10.0 | 494 | 118.0 | [ | |
NiS x P y | 纳米线 | 8.5 | KHCO3 | 10.0 | 315 | - | [ | |
Mn基 | MnO x | 薄膜 | 7.0 | PBS | 0.1 | 470 | 68.0 | [ |
Mn5O8 | 纳米颗粒 | 7.8 | PBS | 5.0 | 580 | 78.7 | [ |
表1 中性环境中OER电催化剂的测试和性能
Table 1 Measurement and performance of OER electrocatalysts in neutral media
催化剂 | 形貌 | pH | 电解质 | 电流密度/(mA· cm-2) | η /mV | Tafel 斜率/ (mV· dec-1) | 参考文献 | |
---|---|---|---|---|---|---|---|---|
Co基 | Co⁃Pi | 薄膜 | 7.0 | KPi | 1.0 | 410 | 60.0 | [ |
Co⁃Bi | 纳米片 | 7.0 | PBS | 14.4 | 570 | 160.0 | [ | |
Co⁃Bi | 纳米片 | 9.2 | KBi | 10.0 | 469 | 138.0 | [ | |
Mn⁃Co⁃Bi | 纳米线 | 9.2 | KBi | 10.0 | 366 | 193.0 | [ | |
Ni⁃Co⁃Bi | 纳米线 | 9.2 | KBi | 10.0 | 388 | 142.0 | [ | |
Co3O4 | 纳米链 | 7.0 | KBi | 1.0 | 385 | 70.0 | [ | |
Co3O4 | 纳米颗粒 | 7.0 | KPi | 10.0 | 390 | - | [ | |
CoO x H y | 纳米片阵列 | 7.0 | PBS | 10.0 | 430 | 121.0 | [ | |
IrO x /CoO x | 纳米颗粒 | 7.0 | PBS | 1.0 | 220 | 29.0 | [ | |
CoIr | 纳米片 | 7.0 | PBS | 10.0 | 373 | 117.0 | [ | |
Co3S4 | 纳米片 | 7.0 | PBS | 起始过电势 | 310 | 151.0 | [ | |
CoS4.6O0.6 | 多孔纳米管 | 7.0 | PBS | 起始过电势 | 270 | 164.0 | [ | |
Na2CoP2O7 | 块体 | 7.0 | PBS | 1.0 | 560 | 80.0 | [ | |
Co2P | 纳米颗粒 | 7.0 | PBS | 起始过电势 | 320 | 129.8 | [ | |
Ni0.1Co0.9P | 多孔纳米片 | 7.0 | PBS | 起始过电势 | 250 | 133.0 | [ | |
Co1⁃x Fe x P | 纳米片 | 7.0 | PBS | 10.0 | 500 | - | [ | |
Ni基 | NiCoFeP | - | 7.2 | KHCO3 | 10.0 | 330 | - | [ |
Ni⁃Bi | 纳米阵列 | 9.2 | KBi | 10.0 | 470 | 107.0 | [ | |
Nickel | - | 9.2 | KBi | 1.0 | 540 | 57.0 | [ | |
NiFeO x | - | 7.0 | PBS | 10.0 | 400 | - | [ | |
S⁃doped NiFe2O4 | 纳米片 | 7.4 | PBS | 10.0 | 494 | 118.0 | [ | |
NiS x P y | 纳米线 | 8.5 | KHCO3 | 10.0 | 315 | - | [ | |
Mn基 | MnO x | 薄膜 | 7.0 | PBS | 0.1 | 470 | 68.0 | [ |
Mn5O8 | 纳米颗粒 | 7.8 | PBS | 5.0 | 580 | 78.7 | [ |
1 | LING T,ZHANG T,GE B H,et al.Well⁃dispersed nickel⁃and zinc⁃tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction[J].Advanced Materials,2019,31(16):e1807771. |
2 | LI J,ZHU Y,CHEN W,et al.Breathing⁃mimicking electrocatalysis for oxygen evolution and reduction[J].Joule,2019,3(2):557⁃569. |
3 | 张瑀净,张宝山,孙洁.电解水制氢技术及其催化剂研究进展[J].石油化工高等学校学报,2022,35(6):19⁃27. |
ZHANG Y J,ZHANG B S,SUN J.Progress in hydrogen production by water electrolysis and its electrocatalysts[J].Journal of Petrochemical Universities,2022,35(6):19⁃27. | |
4 | SEH Z W,KIBSGAARD J,DICKENS C F,et al.Combining theory and experiment in electrocatalysis:Insights into materials design[J].Science,2017,355(6321):eaad4998. |
5 | 李志学,杨占旭.共沉淀法制备Co9S8/C材料以及性能研究[J].辽宁石油化工大学学报,2020,40(2):1⁃5. |
LI Z X,YANG Z X.Preparation and properties of Co9S8/C materials by coprecipitation method[J].Journal of Liaoning Shihua University,2020,40(2):1⁃5. | |
6 | GUO J X,ZHENG Y,HU Z P,et al.Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J].Nature Energy,2023,8(3):264⁃272. |
7 | 刘梦珊,孟超,胡涵,等.NiMoN催化电极材料的制备及其电解海水制氢性能[J].石油化工高等学校学报,2023,36(2):1⁃9. |
LIU M S,MENG C,HU H,et al.Preparation of NiMoN catalytic electrode material for hydrogen production via seawater electrolysis[J].Journal of Petrochemical Universities,2023,36(2):1⁃9. | |
8 | MAN I C,SU H Y,CALLE⁃VALLEJO F,et al.Universality in oxygen evolution electrocatalysis on oxide surfaces[J].ChemCatChem,2011,3(7):1159⁃1165. |
9 | DU K,ZHANG L F,SHAN J Q,et al.Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation[J].Nature Communications,2022,13(1):5448. |
10 | JIAO Y,ZHENG Y,JARONIEC M,et al.Design of electrocatalysts for oxygen⁃ and hydrogen⁃involving energy conversion reactions[J].Chemical Society Reviews,2015,44(8):2060⁃2086. |
11 | GUO C X,ZHENG Y,RAN J R,et al.Engineering high⁃energy interfacial structures for high⁃performance oxygen⁃involving electrocatalysis[J].Angewandte Chemie International Edition,2017,56(29):8539⁃8543. |
12 | ROGER I,SYMES M D.Efficient electrocatalytic water oxidation at neutral and high pH by adventitious nickel at nanomolar concentrations[J].Journal of the American Chemical Society,2015,137(43):13980⁃13988. |
13 | LIU X,INAGAKI S,GONG J L.Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation[J].Angewandte Chemie International Edition,2016,55(48):14924⁃14950. |
14 | DUAN L L,WANG L,LI F S,et al.Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands[J].Accounts of Chemical Research,2015,48(7):2084⁃2096. |
15 | BEDIAKO D K,SURENDRANATH Y,NOCERA D G.Mechanistic studies of the oxygen evolution reaction mediated by a nickel⁃borate thin film electrocatalyst[J].Journal of the American Chemical Society,2013,135(9):3662⁃3674. |
16 | XU K,CHENG H,LIU L Q,et al.Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media[J].Nano Letters,2017,17(1):578⁃583. |
17 | CHEN P Z,XU K,ZHOU T P,et al.Strong⁃coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions[J].Angewandte Chemie International Edition,2016,55(7):2488⁃2492. |
18 | DOYLE R L,LYONS M E G.Kinetics and mechanistic aspects of the oxygen evolution reaction at hydrous iron oxide films in base[J].Journal of the Electrochemical Society,2013,160(2):H142. |
19 | SHINAGAWA T,GARCIA⁃ESPARZA A T,TAKANABE K.Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J].Scientific Reports,2015,5(1):13801. |
20 | GARCÍA⁃MOTA M,BAJDICH M,VISWANATHAN V,et al.Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides[J].The Journal of Physical Chemistry C,2012,116(39):21077⁃21082. |
21 | BAJDICH M,GARCÍA⁃MOTA M,VOJVODIC A,et al.Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J].Journal of the American Chemical Society,2013,135(36):13521⁃13530. |
22 | LI Y J,CUI L,DA P F,et al.Multiscale structural engineering of Ni⁃doped CoO nanosheets for zinc⁃air batteries with high power density[J].Advanced Materials,2018,30(46):e1804653. |
23 | LING T,DA P F,ZHENG X L,et al.Atomic⁃level structure engineering of metal oxides for high⁃rate oxygen intercalation pseudocapacitance[J].Science Advances,2018,4(10):eaau6261. |
24 | JIN K,SEO H,HAYASHI T,et al.Mechanistic investigation of water oxidation catalyzed by uniform,assembled MnO nanoparticles[J].Journal of the American Chemical Society,2017,139(6):2277⁃2285. |
25 | RISCH M,RINGLEB F,KOHLHOFF M,et al.Water oxidation by amorphous cobalt⁃based oxides:In situ tracking of redox transitions and mode of catalysis[J].Energy & Environmental Science,2015,8(2):661⁃674. |
26 | TAKASHIMA T,HASHIMOTO K,NAKAMURA R.Mechanisms of pH⁃dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts[J].Journal of the American Chemical Society,2012,134(3):1519⁃1527. |
27 | BEDIAKO D K,LASSALLE⁃KAISER B,SURENDRANATH Y,et al.Structure⁃activity correlations in a nickel⁃borate oxygen evolution catalyst[J].Journal of the American Chemical Society,2012,134(15):6801⁃6809. |
28 | BERGMANN A,MARTINEZ⁃MORENO E,TESCHNER D,et al.Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J].Nature Communications,2015,6(1):8625. |
29 | HADT R G,HAYES D,BRODSKY C N,et al.X⁃ray spectroscopic characterization of Co(Ⅳ) and metal⁃metal interactions in Co4O4:Electronic structure contributions to the formation of high⁃valent states relevant to the oxygen evolution reaction[J].Journal of the American Chemical Society,2016,138(34):11017⁃11030. |
30 | JIN K,PARK J,LEE J,et al.Hydrated manganese(Ⅱ) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst[J].Journal of the American Chemical Society,2014,136(20):7435⁃7443. |
31 | LI J,GÜTTINGER R,MORÉ R,et al.Frontiers of water oxidation:The quest for true catalysts[J].Chemical Society Reviews,2017,46(20):6124⁃6147. |
32 | BROWNE M P,DOMÍNGUEZ C,COLAVITA P E.Emerging trends in metal oxide electrocatalysis:Bifunctional oxygen catalysis,synergies and new insights from in situ studies[J].Current Opinion in Electrochemistry,2018,7:208⁃215. |
33 | ZHENG X L,ZHANG B,DE LUNA P,et al.Theory⁃driven design of high⁃valence metal sites for water oxidation confirmed using in situ soft X⁃ray absorption[J].Nature Chemistry,2018,10(2):149⁃154. |
34 | KUNIMATSU K,YODA T,TRYK D A,et al.In situ ATR⁃FTIR study of oxygenreduction at the Pt/Nafion interface[J].Physical Chemistry Chemical Physics,2010,12(3):621⁃629. |
35 | SHAO M H,LIU P,ADZIC R R.Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J].Journal of the American Chemical Society,2006,128(23):7408⁃7409. |
36 | NAYAK S,BIEDERMANN P U,STRATMANN M,et al.A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n⁃Ge(100) by ATR⁃IR and DFT[J].Physical Chemistry Chemical Physics,2013,15(16):5771⁃5781. |
37 | NAYAK S,MCPHERSON I J,VINCENT K A.Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy[J].Angewandte Chemie,2018,130(39):13037⁃13040. |
38 | YAO Y C,HU S L,CHEN W X,et al.Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J].Nature Catalysis,2019,2(4):304⁃313. |
39 | DENG Y L,YEO B S.Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando raman spectroscopy[J].ACS Catalysis,2017,7(11):7873⁃7889. |
40 | LOUIE M W,BELL A T.An investigation of thin⁃film Ni⁃Fe oxide catalysts for the electrochemical evolution of oxygen[J].Journal of the American Chemical Society,2013,135(33):12329⁃12337. |
41 | TRZEŚNIEWSKI B J,DIAZ⁃MORALES O,VERMAAS D A,et al.In situ observation of active oxygen species in Fe⁃containing Ni⁃based oxygen evolution catalysts:The effect of pH on electrochemical activity[J].Journal of the American Chemical Society,2015,137(48):15112⁃15121. |
42 | WANG H Y,HUNG S F,HSU Y Y,et al.In situ spectroscopic identification of μ⁃OO bridging on spinel Co3O4 water oxidation electrocatalyst[J].The Journal of Physical Chemistry Letters,2016,7(23):4847⁃4853. |
43 | YEO B S,BELL A T.Enhanced activity of gold⁃supported cobalt oxide for the electrochemical evolution of oxygen[J].Journal of the American Chemical Society,2011,133(14):5587⁃5593. |
44 | SUEN N T,HUNG S F,QUAN Q,et al.Electrocatalysis for the oxygen evolution reaction:Recent development and future perspectives[J].Chemical Society Reviews,2017,46(2):337⁃365. |
45 | KOPER M T M.Theory of multiple proton⁃electron transfer reactions and its implications for electrocatalysis[J].Chemical Science,2013,4(7):2710⁃2723. |
46 | KOPER M T M.Theory of the transition from sequential to concerted electrochemical proton⁃electron transfer[J].Physical Chemistry Chemical Physics,2013,15(5):1399⁃1407. |
47 | GIORDANO L,HAN B H,RISCH M,et al.pH dependence of OER activity of oxides:Current and future perspectives[J].Catalysis Today,2016,262:2⁃10. |
48 | FABBRI E,HABEREDER A,WALTAR K,et al.Developments and perspectives of oxide⁃based catalysts for the oxygen evolution reaction[J].Catalysis Science & Technology,2014,4(11):3800⁃3821. |
49 | FANG Y H,LIU Z P.Tafel kinetics of electrocatalytic reactions:From experiment to first⁃principles[J].ACS Catalysis,2014,4(12):4364⁃4376. |
50 | SURENDRANATH Y,KANAN M W,NOCERA D G.Mechanistic studies of the oxygen evolution reaction by a cobalt⁃phosphate catalyst at neutral pH[J].Journal of the American Chemical Society,2010,132(46):16501⁃16509. |
51 | DOYLE R L,GODWIN I J,BRANDON M P,et al.Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes[J].Physical Chemistry Chemical Physics,2013,15(33):13737⁃13783. |
52 | HUYNH M,SHI C Y,BILLINGE S J L,et al.Nature of activated manganese oxide for oxygen evolution[J].Journal of the American Chemical Society,2015,137(47):14887⁃14904. |
53 | MCALPIN J G,SURENDRANATH Y,DINCA M,et al.EPR evidence for Co(Ⅳ) species produced during water oxidation at neutral pH[J].Journal of the American Chemical Society,2010,132(20):6882⁃6883. |
54 | KANAN M W,YANO J,SURENDRANATH Y,et al.Structure and valency of a cobalt⁃phosphate water oxidation catalyst determined by in situ X⁃ray spectroscopy[J].Journal of the American Chemical Society,2010,132(39):13692⁃13701. |
55 | KANAN M W,NOCERA D G.In situ formation of an oxygen⁃evolving catalyst in neutral water containing phosphate and Co2+[J].Science,2008,321(5892):1072⁃1075. |
56 | KANAN M W,SURENDRANATH Y,NOCERA D G.Cobalt⁃phosphate oxygen⁃evolving compound[J].Chemical Society Reviews,2009,38(1):109⁃114. |
57 | BEDIAKO D K,COSTENTIN C,JONES E C,et al.Proton⁃electron transport and transfer in electrocatalytic films.Application to a cobalt⁃based O2⁃evolution catalyst[J].Journal of the American Chemical Society,2013,135(28):10492⁃10502. |
58 | TAKASHIMA T,HASHIMOTO K,NAKAMURA R.Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions[J].Journal of the American Chemical Society,2012,134(44):18153⁃18156. |
59 | YAMAGUCHI A,INUZUKA R,TAKASHIMA T,et al.Regulating proton⁃coupled electron transfer for efficient water splitting by manganese oxides at neutral pH[J].Nature Communications,2014,5(1):4256. |
60 | ZHANG M,DE RESPINIS M,FREI H.Time⁃resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst[J].Nature Chemistry,2014,6(4):362⁃367. |
61 | BOUWMAN R,FRERIKS I L C.An approach to in situ fourier⁃transform infrared spectroscopic studies of solid/gas interfaces under realistic conditions of temperature and pressure[J].Applications of Surface Science,1980,4(1):11⁃20. |
62 | KATAOKA S,TEJEDOR⁃TEJEDOR M I,CORONADO J M,et al.Thin⁃film transmission IR spectroscopy as an in situ probe of the gas⁃solid interface in photocatalytic processes[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):323⁃329. |
63 | LI P P,ZHAO R B,CHEN H Y,et al.Recent advances in the development of water oxidation electrocatalysts at mild pH[J].Small,2019,15(13):e1805103. |
64 | LUTTERMAN D A,SURENDRANATH Y,NOCERA D G.A self⁃healing oxygen⁃evolving catalyst[J].Journal of the American Chemical Society,2009,131(11):3838⁃3839. |
65 | YANG L B,LIU D N,HAO S,et al.A cobalt⁃borate nanosheet array:An efficient and durable non⁃noble⁃metal electrocatalyst for water oxidation at near neutral pH[J].Journal of Materials Chemistry A,2017,5(16):7305⁃7308. |
66 | MA M,QU F L,JI X Q,et al.Bimetallic nickel⁃substituted cobalt⁃borate nanowire array:An earth⁃abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH[J].Small,2017,13(25):1700394. |
67 | HAO S,YANG Y C.Water splitting in near⁃neutral media:Using an Mn⁃Co⁃based nanowire array as a complementary electrocatalyst[J].Journal of Materials Chemistry A,2017,5(24):12091⁃12095. |
68 | JOYA K S,TAKANABE K,DE GROOT H J M.Surface generation of a cobalt⁃derived water oxidation electrocatalyst developed in a neutral HCO 3 - /CO2 system[J].Advanced Energy Materials,2014,4(16):1400252. |
69 | NI B,WANG K,HE T,et al.Mimic the photosystem Ⅱ for water oxidation in neutral solution:A case of Co3O4[J].Advanced Energy Materials,2018,8(11):1702313. |
70 | ZHANG Y K,WU C Q,JIANG H L,et al.Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte[J].Advanced Materials,2018,30(18):1707522. |
71 | ESSWEIN A J,SURENDRANATH Y,REECE S Y,et al.Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters[J].Energy & Environmental Science,2011,4(2):499⁃504. |
72 | CHEN M Q,XIE Y Y,WU J X,et al.Cobalt (oxy)hydroxide nanosheet arrays with exceptional porosity and rich defects as a highly efficient oxygen evolution electrocatalyst under neutral conditions[J].Journal of Materials Chemistry A,2019,7(17):10217⁃10224. |
73 | GARDNER G P,GO Y B,ROBINSON D M,et al.Structural requirements in lithium cobalt oxides for the catalytic oxidation of water[J].Angewandte Chemie International Edition,2012,51(7):1616⁃1619. |
74 | GRZELCZAK M,ZHANG J S,PFROMMER J,et al.Electro⁃and photochemical water oxidation on ligand⁃free Co3O4 nanoparticles with tunable sizes[J].ACS Catalysis,2013,3(3):383⁃388. |
75 | LI R Q,HU P F,MIAO M,et al.CoO⁃modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media[J].Journal of Materials Chemistry A,2018,6(48):24767⁃24772. |
76 | MENEZES P W,INDRA A,GONZÁLEZ⁃FLORES D,et al.High⁃performance oxygen redox catalysis with multifunctional cobalt oxide nanochains:Morphology⁃dependent activity[J].ACS Catalysis,2015,5(4):2017⁃2027. |
77 | TAE E L,SONG J,LEE A R,et al.Cobalt oxide electrode doped with iridium oxide as highly efficient water oxidation electrode[J].ACS Catalysis,2015,5(9):5525⁃5529. |
78 | LIU Y W,XIAO C,LYU M J,et al.Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions[J].Angewandte Chemie International Edition,2015,54(38):11231⁃11235. |
79 | KIM H,PARK J,PARK I,et al.Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst[J].Nature Communications,2015,6(1):8253. |
80 | ZHANG X,ZHANG X,XU H M,et al.Iron⁃doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting[J].Advanced Functional Materials,2017,27(24):1606635. |
81 | CAI P W,HUANG J H,CHEN J X,et al.Oxygen⁃containing amorphous cobalt sulfide porous nanocubes as high⁃activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium[J].Angewandte Chemie International Edition,2017,56(17):4858⁃4861. |
82 | WU R,XIAO B,GAO Q,et al.A janus nickel cobalt phosphide catalyst for high⁃efficiency neutral⁃pH water splitting[J].Angewandte Chemie International Edition,2018,57(47):15445⁃15449. |
83 | ROY C,SEBOK B,SCOTT S B,et al.Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy[J].Nature Catalysis,2018,1(11):820⁃829. |
84 | GAO Z W,LIU J Y,CHEN X M,et al.Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates[J].Advanced Materials,2019,31(11):e1804769. |
85 | GÖRLIN M,GLIECH M,DE ARAÚJO J F,et al.Dynamical changes of a Ni⁃Fe oxide water splitting catalyst investigated at different pH[J].Catalysis Today,2016,262:65⁃73. |
86 | FU H Q,ZHANG L,WANG C W,et al.1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation[J].ACS Energy Letters,2018,3(9):2021⁃2029. |
87 | LIU J L,ZHU D D,LING T,et al.S⁃NiFe2O4 ultra⁃small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J].Nano Energy,2017,40:264⁃273. |
88 | JI X Q,CUI L,LIU D N,et al.A nickel⁃borate nanoarray:A highly active 3D oxygen⁃evolving catalyst electrode operating in near⁃neutral water[J].Chemical Communications,2017,53(21):3070⁃3073. |
89 | NAJAFPOUR M M,EHRENBERG T,WIECHEN M,et al.Calcium manganese(Ⅲ) oxides (CaMn2O4⋅xH2O) as biomimetic oxygen⁃evolving catalysts[J].Angewandte Chemie International Edition,2010,49(12):2233⁃2237. |
90 | UMENA Y,KAWAKAMI K,SHEN J R,et al.Crystal structure of oxygen⁃evolving photosystem Ⅱ at a resolution of 1.9 Å[J].Nature,2011,473(7345):55⁃60. |
91 | BERGMANN A,ZAHARIEVA I,DAU H,et al.Electrochemical water splitting by layered and 3D cross⁃linked manganese oxides:Correlating structural motifs and catalytic activity[J].Energy & Environmental Science,2013,6(9):2745⁃2755. |
92 | JEONG D,JIN K,JERNG S E,et al.Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH[J].ACS Catalysis,2015,5(8):4624⁃4628. (编辑 闫玉玲) |
[1] | 王嘉曼, 熊靖, 师金鸽, 韦岳长, 霍开玲. TiO2催化剂催化CO2还原的研究进展[J]. 石油化工高等学校学报, 2024, 37(4): 1-11. |
[2] | 李乐乐, 申丽莎, 涂志明, 卢卓信, 谭弘毅, 杨轶, 闫常峰. Cu掺杂WN松枝状自支撑纳米阵列的制备及其碱性析氢性能的研究[J]. 石油化工高等学校学报, 2024, 37(4): 57-65. |
[3] | 毕艳琴, 陈亮亮, 段春阳, 赵增华. Ce-CoFe-P@CC纳米复合催化体系的OER性能[J]. 石油化工高等学校学报, 2024, 37(3): 49-57. |
[4] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
[5] | 刘梦珊, 孟超, 胡涵, 吴明铂. NiMoN催化电极材料的制备及其电解海水制氢性能[J]. 石油化工高等学校学报, 2023, 36(2): 1-9. |
[6] | 张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 19-27. |
[7] | 范琳, 杨磊, 车晓甄, 李夺, 潘立卫, 钟和香. CO2电化学还原制CO金属催化剂的研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 48-58. |
[8] | 许雪容, 彭祥. 层状双金属氢氧化物电催化剂的合成与应用研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 1-11. |
[9] | 杨扬, 孟超, 胡涵, 吴明铂. NiCo2O4/Ru复合催化剂的制备及锌空电池的应用[J]. 石油化工高等学校学报, 2022, 35(5): 64-70. |
[10] | 宋楗, 韩乔, 杨占旭. NiMoP/C复合材料的制备及其电催化析氢性能[J]. 石油化工高等学校学报, 2022, 35(1): 1-9. |
[11] | 荣冰莹, 刘贺, 惠宇, 宋丽娟, 钟伟. 多吡啶铁配合物制备及电催化质子还原性能[J]. 石油化工高等学校学报, 2020, 33(2): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2021《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发