石油化工高等学校学报 ›› 2022, Vol. 35 ›› Issue (5): 25-35.DOI: 10.3969/j.issn.1006-396X.2022.05.003
收稿日期:
2022-07-04
修回日期:
2022-08-01
出版日期:
2022-10-25
发布日期:
2022-11-22
通讯作者:
陈琼遥,何林
作者简介:
康杏思(1999⁃),女,博士研究生,从事羰基合成均多相催化方面的研究;E⁃mail:kangxingsi@licp.cas.cn。
基金资助:
Xingsi Kang1,2(), Qiongyao Chen1(), Lin He1()
Received:
2022-07-04
Revised:
2022-08-01
Published:
2022-10-25
Online:
2022-11-22
Contact:
Qiongyao Chen, Lin He
摘要:
大气中CO2质量分数于2021年创下历史新高(414.7
中图分类号:
康杏思, 陈琼遥, 何林. 均相催化CO2加氢制备MeOH的研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 25-35.
Xingsi Kang, Qiongyao Chen, Lin He. Recent Advances on MeOH Production via Homogeneous Catalytic CO2 Hydrogenation[J]. Journal of Petrochemical Universities, 2022, 35(5): 25-35.
图8 催化剂12/PEHA双相体系一锅法实现CO2捕集和还原制备MeOH
Fig.8 One?pot two?step CO2 capture and hydrogenation to methanol by catalyst 12/PEHA catalysis using a biphasic setup
图11 利用碱金属氢氧化物的乙二醇溶液吸收CO2实现催化剂12催化CO2制备MeOH
Fig.11 Integrated CO2 scavenging using alkali hydroxide with ethylene glycol and subsequent catalyst 12 catalyzed CO2 to MeOH
图17 多核Ir体系用于CO2加氢制备MeOH(a) Himeda等开发的多核Ir催化剂用于 (b) 催化剂20?m在气固相体系(Cycle 1)和液相体系(Cycle 2)中的反应机理CO2加氢制MeOH X=H or H2O,n=1 or 2
Fig.17 Multinuclear Ir complex catalyst for CO2 hydrogenation to MeOH
1 | Xu Y,Ramanathan V,Victor D G.Global warming will happen faster than we think[J].Nature,2018,564:30⁃32. |
2 | 国际能源署(IEA).Global energy review:CO2 emissions in 2021[EB/OL].(2022⁃03)[2022⁃05].https://www.iea.org/reports/global⁃energy⁃review⁃co2⁃emissions⁃in⁃2021⁃2. |
3 | Berkeley Earth.2021 was warmest year on record for 1.8 million people[EB/OL].(2022⁃01)[2022⁃09].https://berkeleyearth.org/press⁃release⁃2021⁃sixth⁃warmest⁃year/. |
4 | North M,Pasquale R,Young C.Synthesis of cyclic carbonates from epoxides and CO2[J].Green Chemistry,2010,12(9):1514⁃1539. |
5 | Aresta M,Dibenedetto A,Angelini A.Catalysis for the valorization of exhaust carbon:From CO2 to chemicals, materials,and fuels.Technological use of CO2[J].Chemical Reviews,2014,114(3):1709⁃1742. |
6 | Martín C,Fiorani G,Kleij A W.Recent advances in the catalytic preparation of cyclic organic carbonates[J].ACS Catalysis,2015,5(2):1353⁃1370. |
7 | Kaiser P,Unde R B,Kern C,et al.Production of liquid hydrocarbons with CO2 as carbon source based on reverse water⁃gas shift and fischer⁃tropsch synthesis[J].Chemie Ingenieur Technik,2013,85(4):489⁃499. |
8 | Liu Q,Wu L,Jackstell R,et al.Using carbon dioxide as a building block in organic synthesis[J].Nature Communications,2015,6:5933⁃5947. |
9 | Porosoff M D,Yan B,Chen J G.Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons:Challenges and opportunities[J].Energy & Environmental Science,2016,9:62⁃73. |
10 | Liu Z,Wang K,Chen Y,et al.Third⁃generation biorefineries as the means to produce fuels and chemicals from CO2[J].Nature Catalysis,2020,3(3):274⁃288. |
11 | Klankermayer J,Wesselbaum S,Beydoun K,et al.Selective catalytic synthesis using the combination of carbon dioxide and hydrogen:Catalytic chess at the interface of energy and chemistry[J].Angewandte Chemie International Edition,2016,55(26):7296⁃7343. |
12 | 李勇,王征,刘庆彬.CO2均相催化氢化研究进展[J].有机化学, 2017,37(8):1978⁃1990. |
Li Y,Wang Z,Liu Q B.Progress in homogeneous catalytic hydrogenation of CO2[J].Chinese Journal of Organic Chemistry,2017,37(8):1978⁃1990. | |
13 | Zhou W,Cheng K,Kang J,et al.New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J].Chemical Society Reviews,2019,48(12):3193⁃3228. |
14 | Alberico E,Nielsen M.Towards a methanol economy based on homogeneous catalysis:Methanol to H2 and CO2 to methanol[J].Chemical Communications,2015,51(31):6714⁃6725. |
15 | Goeppert A,Czaun M,Jones J P,et al.Recycling of carbon dioxide to methanol and derived products–closing the loop[J].Chemical Society Reviews,2014,43(23):7995⁃8048. |
16 | Li Y N,Ma R,He L N,et al.Homogeneous hydrogenation of carbon dioxide to methanol[J].Catalysis Science & Technology,2014,4(6):1498⁃1512. |
17 | Bai S T,Gilles D S,Liao Y H,et al.Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions[J].Chemical Society Reviews,2021,50(7):4259⁃4298. |
18 | Chakraborty S,Zhang J,Krause J A,et al.An efficient nickel catalyst for the reduction of carbon dioxide with a borane[J].Journal of the American Chemical Society,2010,132(26):8872⁃8873. |
19 | Gomes D N,Blondiaux E,Thuéry P,et al.Metal⁃free reduction of CO2 with hydroboranes:Two efficient pathways at play for the reduction of CO2 to methanol[J].Chemistry⁃A European Journal,2014,20(23):7098⁃7106. |
20 | Riduan S N,Zhang Y,Ying J Y.Conversion of carbon dioxide into methanol with silanes over N⁃Heterocyclic carbene catalysts[J].Angewandte Chemie International Edition,2009,48(18):3322⁃3325. |
21 | Riduan S N,Ying J Y,Zhang Y.Mechanistic insights into the reduction of carbon dioxide with silanes over N⁃Heterocyclic carbene catalysts[J].Chem. Cat. Chem.,2013,5(6):1490⁃1496. |
22 | Lim C H,Holder A M,Hynes J T,et al.Reduction of CO2 to methanol catalyzed by a biomimetic organo⁃hydride produced from pyridine[J].Journal of the American Chemical Society,2014,136(45):16081⁃16095. |
23 | Tominaga K I,Sasaki Y,Kawai M,et al.Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide,methanol and methane[J].Journal of the Chemical Society,Chemical Communications,1993(7):629⁃631. |
24 | Tominaga K,Sasaki Y,Watanabe T,et al.Homogeneous hydrogenation of carbon dioxide to methanol catalyzed by ruthenium cluster anions in the presence of halide anions[J].Bulletin of the Chemical Society of Japan,1995,68(10):2837⁃2842. |
25 | Wesselbaum S,Vom Stein T,Klankermayer J,et al.Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium⁃phosphine catalyst[J].Angewandte Chemie International Edition,2012,51(30):7499⁃7502. |
26 | Wesselbaum S,Moha V,Meuresch M,et al.Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst:From mechanistic investigations to multiphase catalysis[J].Chemical Science,2015,6(1):693⁃704. |
27 | Schieweck B G,Jürling⁃Will P,Klankermayer J.Structurally versatile ligand system for the ruthenium catalyzed one⁃pot hydrogenation of CO2 to methanol[J].ACS Catalysis,2020,10(6):3890⁃3894. |
28 | Schneidewind J,Adam R,Baumann W,et al.Low‐temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst[J].Angewandte Chemie International Edition,2017,56(7):1890⁃1893. |
29 | Scharnagl F K,Hertrich M F,Neitzel G,et al.Homogeneous catalytic hydrogenation of CO2 to methanol–improvements with tailored ligands[J].Advanced Synthesis & Catalysis,2019,361(2):374⁃379. |
30 | Huff C A,Sanford M S.Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol[J].Journal of the American Chemical Society,2011,133(45):18122⁃18125. |
31 | Chu W Y,Culakova Z,Wang B T,et al.Acid⁃assisted hydrogenation of CO2 to methanol in a homogeneous catalytic cascade system[J].ACS Catalysis,2019,9(10):9317⁃9326. |
32 | Everett M,Wass D F.Highly productive CO2 hydrogenation to methanol:A tandem catalytic approach via amide intermediates[J].Chemical Communications,2017,53(68):9502⁃9504. |
33 | Trivedi M,Sharma P,Pandey I K,et al.Acid⁃assisted hydrogenation of CO2 to methanol using Ru(ii) and Rh(iii) RAPTA⁃type catalysts under mild conditions[J].Chemical Communications,2021,57(71):8941⁃8944. |
34 | Rezayee N M,Huff C A,Sanford M S.Tandem amine and ruthenium⁃catalyzed hydrogenation of CO2 to methanol[J].Journal of the American Chemical Society,2015,137(3):1028⁃1031. |
35 | Khusnutdinova J R,Garg J A,Milstein D.Combining low⁃pressure CO2 capture and hydrogenation to form methanol[J].ACS Catalysis,2015,5(4):2416⁃2422. |
36 | Kothandaraman J,Goeppert A,Czaun M,et al.Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J].Journal of the American Chemical Society,2016,138(3):778⁃781. |
37 | Kar S,Sen R,Goeppert A,et al.Integrative CO2 Capture and hydrogenation to methanol with reusable catalyst and amine:Toward a carbon neutral methanol economy[J].Journal of the American Chemical Society,2018,140(5):1580⁃1583. |
38 | Kar S,Sen R,Kothandaraman J,et al.Mechanistic insights into ruthenium⁃pincer⁃catalyzed amine⁃assisted homogeneous hydrogenation of CO2 to methanol[J].Journal of the American Chemical Society,2019,141(7):3160⁃3170. |
39 | Yoshimura A,Watari R,Kuwata S,et al.Poly(ethyleneimine)‐mediated consecutive hydrogenation of carbon dioxide to methanol with Ru catalysts[J].European Journal of Inorganic Chemistry,2019,2019(18):2375⁃2380. |
40 | Kar S,Goeppert A,Prakash G K S.Combined CO2 capture and hydrogenation to methanol:Amine immobilization enables easy recycling of active elements[J].Chem. Sus. Chem.,2019,12(13):3172⁃3177. |
41 | Sen R,Goeppert A,Kar S,et al.Hydroxide based integrated CO2 capture from air and conversion to methanol[J].Journal of the American Chemical Society,2020,142(10):4544⁃4549. |
42 | Zhang F H,Liu C,Li W,et al.An efficient ruthenium catalyst bearing tetradentate ligand for hydrogenations of carbon dioxide[J].Chinese Journal of Chemistry,2018,36(11):1000⁃1002. |
43 | Li W,Xie J H,Yuan M L,et al.Ruthenium complexes of tetradentate bipyridine ligands:Highly efficient catalysts for the hydrogenation of carboxylic esters and lactones[J].Green Chemistry,2014,16(9):4081⁃4085. |
44 | Huff C A,Sanford M S.Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex[J].ACS Catalysis,2013,3(10):2412⁃2416. |
45 | Vogt M,Nerush A,Diskin⁃Posner Y,et al.Reversible CO2 binding triggered by metal⁃ligand cooperation in a rhenium (i) PNP pincer⁃type complex and the reaction with dihydrogen[J].Chemical Science,2014,5(5):2043⁃2051. |
46 | Ribeiro A P C,Martins L M D,Pombeiro A J L.Carbon dioxide⁃to⁃methanol single⁃pot conversion using a C⁃scorpionate iron(ii) catalyst[J].Green Chemistry,2017,19(20):4811⁃4815. |
47 | Miller A J M,Heinekey D M,Mayer J M,et al.Catalytic disproportionation of formic acid to generate methanol[J].Angewandte Chemie International Edition,2013,52(14):3981⁃3984. |
48 | Savourey S,Lefèvre G,Berthet J C,et al.Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts[J].Angewandte Chemie International Edition,2014,53(39):10466⁃10470. |
49 | Sordakis K,Tsurusaki A,Iguchi M,et al.Carbon dioxide to methanol:The aqueous catalytic way at room temperature[J].Chemistry⁃A European Journal,2016,22(44):15605⁃15608. |
50 | Tsurusaki A,Murata K,Onishi N,et al.Investigation of hydrogenation of formic acid to methanol using H2 or formic acid as a hydrogen source[J].ACS Catalysis,2017,7(2):1123⁃1131. |
51 | Sordakis K,Tsurusaki A,Iguchi M,et al.Aqueous phase homogeneous formic acid disproportionation into methanol[J].Green Chemistry,2017,19(10):2371⁃2378. |
52 | Kanega R,Onishi N,Tanaka S,et al.Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas⁃solid phase reaction[J].Journal of the American Chemical Society,2021,143(3):1570⁃1576. |
53 | Sordakis K,Tang C,Vogt L K,et al.Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols[J].Chemical Reviews,2018,118(2):372⁃433. |
54 | Zhong J,Yang X,Wu Z,et al.State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J].Chemical Society Reviews,2020,49(5):1385⁃1413. |
55 | Kattel S,Liu P,Chen J G.Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J].Journal of the American Chemical Society,2017,139(29):9739⁃9754. |
[1] | 唐伟建, 王钰佳, 孙娜, 王海彦. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24. |
[2] | 吕昌赫, 吴殿卿, 张楷文, 于东北, 张财顺, 韩蛟, 高志贤. Cu⁃Mn⁃Al三元尖晶石催化甲醇重整反应特性[J]. 石油化工高等学校学报, 2024, 37(2): 50-57. |
[3] | 叶赛, 建伟伟, 王帅, 张在源. 金属负载氧化石墨烯对CO2水合物生成的动力学特性研究[J]. 石油化工高等学校学报, 2024, 37(1): 25-33. |
[4] | 陈晓雨, 王春蓉, 孙京, 王景芸, 陈阳, 周明东. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44. |
[5] | 刘嘉敏, 越婷婷, 常迎, 郭少红, 贾晶春, 贾美林. CO2RR稀土基催化剂的研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 1-12. |
[6] | 武玉泰, 王佳琦, 李丹, 胡旭, 王永胜, 郝广平. 双金属⁃氮掺杂炭催化剂的制备及其电催化CO2性能[J]. 石油化工高等学校学报, 2023, 36(3): 1-10. |
[7] | 杨依武, 彭冲, 梁守才, 侯政煜, 谢飞. 重油加氢过程集总动力学研究进展[J]. 石油化工高等学校学报, 2023, 36(2): 10-19. |
[8] | 于博, 凌江华, 贾富智, 刘美. 溶剂萃取法分离回收废催化剂碱浸渣中铝、镍的研究[J]. 石油化工高等学校学报, 2023, 36(2): 20-26. |
[9] | 高诗奡, 吴志杰. 用于加氢异构的一维孔沸石分子筛研究进展[J]. 石油化工高等学校学报, 2023, 36(2): 51-62. |
[10] | 杨昕毓, 孙舒, 石岩, 冯旭, 韩蛟, 张财顺, 张磊, 高志贤. 水热时间对CuO/CeO2催化甲醇水蒸气重整制氢的影响[J]. 石油化工高等学校学报, 2023, 36(2): 63-69. |
[11] | 鞠雅娜, 张雅琳, 张然, 宋绍彤, 吕忠武, 袁晓亮, 李阳, 吴培. 金属分散度对Ni基催化剂催化活性的影响研究[J]. 石油化工高等学校学报, 2022, 35(5): 71-77. |
[12] | 李培才, 王宁, 白树行. 钯基合金催化剂制备及其选择性加氢性能研究[J]. 石油化工高等学校学报, 2022, 35(5): 78-82. |
[13] | 荣振洋, 祁路明, 刘清, 费兆阳, 崔咪芬, 乔旭. 硅基固体胺吸附剂捕集空气中CO2的研究进展[J]. 石油化工高等学校学报, 2022, 35(4): 1-9. |
[14] | 高飞, 辛建旭, 郭志强, 李欣欣, 孙广宇. 含杂质CO2物性变化规律及其机理研究[J]. 石油化工高等学校学报, 2022, 35(4): 18-25. |
[15] | 卢畅, 张财顺, 刘道胜, 张磊, 高志贤. CuO⁃SiO2⁃CeO2催化剂的设计、制备及性能研究[J]. 石油化工高等学校学报, 2022, 35(1): 29-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2024《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发