石油化工高等学校学报

石油化工高等学校学报 ›› 2018, Vol. 31 ›› Issue (6): 73-81.DOI: 10.3969/j.issn.1006-396X.2018.06.012

• 油气储运 • 上一篇    下一篇

基于优化BP网络的液体管道工况识别方法研究

李传宪1刘定宏1李剑2朱浩然1路太辉3何伟光3   

  1. 1. 中国石油大学(华东) 油气储运安全省级重点实验室, 山东 青岛 266580; 2. 中油国际管道公司 中缅管道项目公司, 北京 100007; 3. 中石油北京天然气管道有限公司, 北京100007)
  • 收稿日期:2017-12-22 修回日期:2018-01-18 出版日期:2018-12-25 发布日期:2018-12-10
  • 作者简介:李传宪(1963?),男,博士,教授,博士生导师,从事长距离管道输送技术方面研究;E?mail:lchxain@upc.edu.cn。
  • 基金资助:
    国家自然科学基金资助(51774311);山东省自然科学基金资助(ZR2017MEE022)。

Condition Recognition of Liquid Pipeline Based on Optimized BP Artificial Neural Network

Li Chuanxian1Liu Dinghong1Li Jian2Zhu Haoran1Lu Taihui3He Weiguang3   

  1. 1. Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum, Qingdao Shandong 266580,China; 2. CNPC China?Burma Pipeline Project Co. Ltd., Beijing 100007,China; 3. CNPC Beijing Natural Gas Pipeline Co. Ltd.,Beijing 100007,China
  • Received:2017-12-22 Revised:2018-01-18 Published:2018-12-25 Online:2018-12-10

摘要:  利用环道实验装置模拟实际管道的不同工况,应用小波分析对原始信号降噪,并利用基于核的主成分分析方法(KPCA)提取处理后泄漏信号的时频域特征值,得到神经网络最终输入向量。由于传统BP神经网络在进行工况识别时容易陷入局部极小值,因此利用遗传算法(GA)和粒子群算法(PSO)对BP神经网络进行优化。结果表明,两种优化后的神经网络相较传统BP神经网络具有更强的识别泄漏工况能力。最后从测试准确度和训练时间两个方面,对两种不同优化算法进行对比并提出其不同的适用情况。

关键词: BP神经网络,  工况识别,  KPCA,  遗传算法,  粒子群算法

Abstract: The loop pipe apparatus are used to simulate the different conditions of the actual pipeline and denoise the original signal by the wavelet method. Kernel⁃based Principal Component Analysis (KPCA) is used to extract the time⁃frequency domain eigenvalues of the leaked signals, and the final input vector of the neural network is obtained. Because the traditional BP neural network is easy to fall into local minimum when it is used to identify working conditions, the BP neural network is optimized by genetic algorithm (GA) and particle swarm optimization (PSO). Compared with the traditional BP neural network,the result show that the two optimized BP neural networks have stronger ability to identify leakage working conditions. Finally, from the two aspects of test accuracy and training time, two different optimization algorithms are compared and their different application situations are proposed.

Key words: BP neural network, Condition recognition, KPCA, Genetic algorithm, Particle swarm optimization (PSO) algorithm

引用本文

李传宪, 刘定宏, 李剑, 朱浩然, 路太辉, 何伟光. 基于优化BP网络的液体管道工况识别方法研究[J]. 石油化工高等学校学报, 2018, 31(6): 73-81.

Li Chuanxian, Liu Dinghong, Li Jian, Zhu Haoran, Lu Taihui, He Weiguang. Condition Recognition of Liquid Pipeline Based on Optimized BP Artificial Neural Network[J]. Journal of Petrochemical Universities, 2018, 31(6): 73-81.

使用本文