| [1] |
李万坤, 武帅, 张广元, 等. 锂离子电池硅负极有机无机复合导电黏结剂的制备与性能[J]. 当代化工, 2025, 54(3): 544⁃549.
|
|
LI W K, WU S, ZHANG G Y, et al. Preparation and properties of organic⁃inorganic composite conductive binder for silicon anodes of lithium⁃ion batteries[J]. Contemporary Chemical Industry, 2025, 54(3): 544⁃549.
|
| [2] |
张航,康欣欣,赵思思,等.铁基金属⁃有机框架材料电催化析氧性能的研究进展[J].沈阳师范大学学报(自然科学版),2024,42(4):290⁃294.
|
|
ZHANG H,KANG X X,ZHAO S S,et al.Research progress on the electrocatalytic oxygen evolution performance of iron⁃based metal⁃organic frameworks[J].Journal of Shenyang Normal University(Natural Science Edition),2024,42(4):290⁃294.
|
| [3] |
王常虹, 董汉成, 凌明祥, 等. 基于DS数据融合与SVR⁃PF的锂离子电池RUL预测方法[J]. 东北石油大学学报, 2015, 39(4): 109⁃118.
|
|
WANG C H, DONG H C, LING M X, et al. Lithium⁃ion battery RUL prediction based on dempster⁃shafer theory and SVR⁃PF[J]. Journal of Northeast Petroleum University, 2015, 39(4): 109⁃118.
|
| [4] |
温涛, 李小成, 凡纪鹏, 等. 高镍锂离子电池三元正极材料的掺杂改性研究进展[J]. 石油化工高等学校学报, 2025, 38(3): 20⁃31.
|
|
WEN T, LI X C, FAN J P, et al. Research progress on doping modification of ternary cathode materials for nickel⁃rich lithium ion batteries[J]. Journal of Petrochemical Universities, 2025, 38(3): 20⁃31.
|
| [5] |
胡健, 刘水发, 吴娜, 等. 退役锂离子电池沉锂母液的双极膜电渗析脱盐[J]. 化工环保, 2023, 43(2): 228⁃233.
|
|
HU J, LIU S F, WU N, et al. Desalination of mother liquor generated in lithium carbonate precipitation of retired lithium⁃ion battery by bipolar membrane electrodialysis[J]. Environmental Protection of Chemical Industry, 2023, 43(2): 228⁃233.
|
| [6] |
张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633⁃648.
|
|
ZHANG C H, LI N W, ZHANG X Q. Electrode materials for flexible lithium⁃ion battery[J]. Progress in Chemistry, 2021, 33(4): 633⁃648.
|
| [7] |
望军, 刘晓燕, 邢安. 柔性锂离子电池负极材料研究进展[J]. 炭素技术, 2019, 38(5): 1⁃6.
|
|
WANG J, LIU X Y, XING A. Research progress of anode materials for flexible lithium⁃ion batteries[J]. Carbon Techniques, 2019, 38(5): 1⁃6.
|
| [8] |
陈琪. 基于柔性碳纤维复合电极的钠离子电池的制备与研究[D]. 南京: 南京理工大学, 2017.
|
| [9] |
崔新然, 米新艳, 张克金, 等. 适用于锂离子电池的碳纤维布基柔软集流体的制备及性能研究[J]. 汽车工艺与材料, 2018(4): 5⁃8.
|
|
CUI X R, MI X Y, ZHANG K J, et al. Preparation and performance research of carbon fiber cloth based soft current collector suitable for lithium ion battery[J]. Automobile Technology & Material, 2018(4): 5⁃8.
|
| [10] |
张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(增刊2): 30⁃36.
|
|
ZHANG X Y, KANG J L. Research progress of flexible self⁃supporting nanostructure electrodes[J]. Materials Reports, 2020, 34(S2): 30⁃36.
|
| [11] |
薛伟. 四氧化三钴改性修饰电极的制备及电化学性能研究[D]. 郑州: 华北水利水电大学, 2023.
|
| [12] |
李明远. 锂离子电池中ZnO/多层碳纳米复合负极材料的研究[D]. 杭州: 中国计量大学, 2023.
|
| [13] |
董国荣. 掺杂对ZnO和Co3O4电催化析氢性能影响研究[D]. 扬州: 扬州大学, 2023.
|
| [14] |
潘蝶. 钴镍基碳布电极微纳形貌的构筑及其超级电容器性能研究[D]. 南宁: 广西大学, 2024.
|
| [15] |
杜庆波, 宋长磊, 方迎春, 等. 四氧化三钴微纳米棒的制备、表征及其电化学性能研究[J]. 白城师范学院学报, 2023(5): 11⁃17.
|
|
DU Q B, SONG C L, FANG Y C, et al. Preparation, characterization and electrochemical properties of Co3O4 micro⁃nanorods[J]. Journal of Baicheng Normal College, 2023(5): 11⁃17.
|
| [16] |
钱森森. 锂离子电池氧化锌基负极材料的制备及电化学性能研究[D]. 马鞍山: 安徽工业大学, 2022.
|
| [17] |
殷学民. 陶瓷纳米线@NiCo2O4电极材料的多级结构构建及超电容性能研究[D]. 西安: 西北工业大学, 2021.
|
| [18] |
CUI L H, YANG K F, MAO M H, et al. Decoration of three⁃dimensional ZnO@Ni2P heterostructure nanoflake arrays: A novel electrode material for hybrid supercapacitors[J]. New Journal of Chemistry, 2025, 49(28): 12066⁃12078.
|
| [19] |
管若含. MOFs衍生Co3O4/C锂离子电池负极材料的制备及性能研究[D]. 唐山: 华北理工大学, 2022.
|
| [20] |
李嘉昕. 四氧化三钴纳米材料的可控制备及在锌基碱性电池的性能研究[D]. 沈阳: 辽宁大学, 2023.
|
| [21] |
周佳盈, 李双鹏, 肖煌, 等. 嵌入式四氧化三钴负极材料的赝电容性能研究[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 1⁃9.
|
|
ZHOU J Y, LI S P, XIAO H, et al. Study on pseudocapacitance of embedded cobalt tetroxide anode materials[J]. Journal of South China Normal University(Natural Science Edition), 2023, 55(2): 1⁃9.
|
| [22] |
张露露. 镍锌二次电池氧化锌负极的掺杂/表面改性研究[D]. 西安: 长安大学, 2023.
|
| [23] |
LIN J, Raji A R O, NAN K W, et al. Iron oxide nanoparticle and graphene nanoribbon composite as an anode material for high⁃performance Li⁃ion batteries[J]. Advanced Functional Materials, 2014, 24(14): 2044⁃2048.
|
| [24] |
赵红晓, 朱传旭, 付超, 等. CuSn(OH)6/CNT纳米复合负极材料的制备及其电化学性能[J]. 石化技术与应用, 2025, 43(3): 175⁃179.
|
|
ZHAO H X, ZHU C X, FU C, et al. Preparation and electrochemical performance of CuSn(OH)6/CNT nanocomposites as negative electrode material[J]. Petrochemical Technology & Application, 2025, 43(3): 175⁃179.
|
| [25] |
LIU Z K, HUANG K, KANG J M, et al. Textile⁃derived freestanding Fe3O4/porous carbon cloth composite electrode for flexible Li⁃ion batteries with remarkable cycling stability[J]. Applied Surface Science, 2021, 567: 150761.
|
| [26] |
HAN Y, CHATTI M, GE Y, et al. Binder⁃free electrodes derived from interlayer⁃expanded MoS2 nanosheets on carbon cloth with a 3D porous structure for lithium storage[J]. ChemElectroChem, 2019, 6(8): 2338⁃2343.
|
| [27] |
DENG Z N, JIANG H, HU Y J, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li⁃ion batteries[J]. Advanced Materials, 2017, 29(10): 1603020.
|
| [28] |
SHEN K E, CAI S, LING R, et al. Three⁃dimensional ordered macroporous ZnO/ZnS heterostructure on carbon cloth as a free⁃standing anode with high areal capacity for sodium⁃ion batteries[J]. Journal of Alloys and Compounds, 2020, 835: 155156.
|
| [29] |
LIU T Q, WANG W Q, YI M J, et al. Metal⁃organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder⁃free electrodes for lithium⁃ion batteries[J]. Chemical Engineering Journal, 2018, 354: 454⁃462.
|