1 |
吴青. “双碳”目标下海洋油气资源高效利用的关键技术及展望[J]. 石油炼制与化工, 2021, 52(10): 46⁃53.
|
|
WU Q. Key technologies and prospects for efficient utilization of offshore oil and gas resources under the targets of carbon emission peak and carbon neutrality[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 46⁃53.
|
2 |
韩冬, 毕璇, 万盈, 等. 非常规油气田开发含油岩屑环保无害化处理技术[J]. 当代化工, 2024, 53(5): 1170⁃1173.
|
|
HAN D, BI X, WAN Y, et al. Environmentally friendly and harmless treatment technology for oily rock cuttings in unconventional oil and gas field development[J]. Contemporary Chemical Industry, 2024, 53(5): 1170⁃1173.
|
3 |
石磊. 致密砂岩油藏CO2吞吐沥青质沉积对储层的伤害特征[J]. 油田化学, 2022, 39(2): 343⁃348.
|
|
SHI L. Damage characteristics of asphaltene deposition during CO2 huff and puff in tight sandstone reservoir[J]. Oilfield Chemistry, 2022, 39(2): 343⁃348.
|
4 |
赵玉龙, 强贤宇, 张芮菡, 等. 深层⁃超深层碳酸盐岩油气藏储层特征及渗流特征研究进展[J]. 辽宁石油化工大学学报, 2024, 44(5): 44⁃53.
|
|
ZHAO Y L,QIANG X Y, ZHANG R H, et al. Research progress on reservoir characteristics and seepage characteristics of deep and ultra⁃deep carbonate oil and gas reservoirs[J]. Journal of Liaoning Petrochemical University, 2024, 44(5): 44⁃53.
|
5 |
梁也, 单玄龙, 何月顺, 等. 鄂尔多斯盆地南缘延安组降解油砂地球化学特征及油源分析[J]. 东北石油大学学报, 2023, 47(5): 49⁃60.
|
|
LIANG Y,SHAN X L,HE Y S,et al.Geochemical characteristics and oil source analysis of degraded oil sands in the Yan'an Formation in the southern margin of the Ordos Basin[J]. Journal of Northeast Petroleum University, 2023, 47(5): 49⁃60.
|
6 |
李臻, 宋先知, 李根生, 等. 基于双输入序列到序列模型的井眼轨迹实时智能预测方法[J]. 石油钻采工艺, 2023, 45(4): 393⁃403.
|
|
LI Z, SONG X Z, LI G S, et al. Real⁃time intelligent prediction of well trajectory based on dual⁃input sequence⁃to⁃sequence model[J]. Oil Drilling & Production Technology, 2023, 45(4): 393⁃403.
|
7 |
区家明, 郭清, 杜爱民, 等. 三维实时自动磁导向技术为定向井地下巡航绕障精准中靶指路[J]. 石油科技论坛, 2012, 31(6): 9⁃13.
|
|
OU J M, GUO Q, DU A M, et al. 3D real⁃time automatic magnetic⁃guided technology for directional well to hit target accurately[J]. Petroleum Science and Technology Forum, 2012, 31(6): 9⁃13.
|
8 |
肖通, 王智明, 崔畅. 井眼轨迹不确定性误差校正方法[J]. 现代制造技术与装备, 2020, 56(12): 102⁃104.
|
|
XIAO T, WANG Z M, CUI C. Error correction method of well position uncertainty[J]. Modern Manufacturing Technology and Equipment, 2020, 56(12): 102⁃104.
|
9 |
孟卓然. BHA轴向磁干扰对方位测量误差的影响——基于人工磁场模拟方法[J]. 石油学报, 2020, 41(8): 1011⁃1018.
|
|
MENG Z R. Effect of BHA axial magnetic interference on the azimuth measurement error: A simulation method based on artificial magnetic field[J]. Acta Petrolei Sinica, 2020, 41(8): 1011⁃1018.
|
10 |
EKSETH R, TORKILDSEN T, BROOKS A, et al. High⁃integrity wellbore surveys: Methods for eliminating gross errors[C]//SPE/IADC Drilling Conference. Amsterdam: SPE, 2007: SPE⁃105558⁃MS.
|
11 |
刘建光,底青云,张文秀.基于多测点分析法的水平井高精度磁方位校正方法[J].地球物理学报,2019,62(7):2759⁃2766.
|
|
LIU J G, DE Q Y, ZHANG W X. High precision magnetic azimuth correction of horizontal well by multi⁃station analysis[J]. Chinese Journal of Geophysics, 2019, 62(7): 2759⁃2766.
|
12 |
冯春. 中国近海地磁场基本模型的建立及分析[D]. 青岛: 中国海洋大学, 2014.
|
13 |
WILLIAMSON H S. Accuracy prediction for directional measurement while drilling[J]. SPE Drilling & Completion, 2000, 15(4): 221⁃233.
|
14 |
KABIRZADEH H, RANGELOVA E, LEE G H, et al. Dynamic error analysis of measurement while drilling using variable geomagnetic in⁃field referencing[J]. SPE Journal, 2018, 23(6): 2327⁃2338.
|
15 |
POEDJONO B, ADLY E, TERPENING M, et al. Using geomagnetic referencing technology for precise wellbore placemen: AADE⁃11⁃NTCE⁃13[R]. Houston: American Association of Drilling Engineers, 2011.
|
16 |
刘修善. 基于地球椭球的真三维井眼定位方法[J]. 石油勘探与开发, 2017, 44(2): 275⁃280.
|
|
LIU X S. A true three⁃dimensional wellbore positioning method based on the earth ellipsoid[J]. Petroleum Exploration and Development, 2017, 44(2): 275⁃280.
|
17 |
汪敏. 基于磁方位校正的地质模型精度分析[J]. 钻采工艺, 2017, 40(3): 1⁃3.
|
|
WANG M. Accuracy analysis of geological models based on magnetic azimuth correction[J]. Drilling & Production Technology, 2017, 40(3): 1⁃3.
|
18 |
魏泽坤, 冯旭亮, 马佳月, 等. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质, 2023, 56(5): 98⁃110.
|
|
WEI Z K, FENG X L, MA JIA Y, et al. Characteristics of gravity and magnetic field and their significance of helium resources exploration in the southeastern Ordos Basin[J]. Northwestern Geology, 2023, 56(5): 98⁃110.
|
19 |
马小雷,袁炳强,许文强,等.鄂尔多斯盆地南缘重磁场特征及其与砂岩型铀矿关系[J].地质与勘探,2016,52(4):647⁃656.
|
|
MA X L, YUAN B Q, XU W Q, et al. The relationship between features of gravity and magnetic field and sandstone⁃type uranium deposits in the south of Ordos Basin[J]. Geology and Exploration, 2016, 52(4): 647⁃656.
|
20 |
许文强, 袁炳强, 张春灌, 等. 鄂尔多斯盆地渭北隆起带重磁场特征[J]. 煤田地质与勘探, 2015(6): 114⁃120.
|
|
XU W Q, YUAN B Q, ZHANG C G, et al. Characteristics of gravity and magnetic field in Weibei uplift of Ordos Basin[J]. Coal Geology & Exploration, 2015(6): 114⁃120.
|
21 |
张焕侠, 刘建利, 屈挺, 等. 渭北韩城-富平一带重磁异常特征及其地质找矿意义[J]. 陕西地质, 2023, 41(1): 19⁃25.
|
|
ZHANG H X, LIU J L, QU T, et al. Gravagnetic anomalies and ore prospecting in the area from Hancheng to Fuping county at the northern side of the Weihe river[J]. Geology of Shaanxi, 2023, 41(1): 19⁃25.
|
22 |
宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34⁃41.
|
|
NING Y L, ZHOU Z Y, SUN D H. The application of magnetic and gravity data on research the basement in the southwest of Ordos Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 34⁃41.
|
23 |
孙占强, 王春伟. 河口坝砂岩体夹层发育特征及其对剩余油分布的影响——以史南油田L11断块沙二段为例[J]. 石油化工高等学校学报, 2024, 37(3): 34⁃41.
|
|
SUN Z Q, WANG C W. Development characteristics of sandstone interlayer in estuary bar and its influence on remaining oil distribution: Take the example of Sha⁃2 member of L11 fault block of Shinan oilfield[J]. Journal of Petrochemical Universities, 2024, 37(3): 34⁃41.
|
24 |
管志川, 刘永旺, 史玉才, 等. 竖直套管对随钻磁测量参数影响的试验研究[J]. 中国石油大学学报(自然科学版), 2011, 35(4): 72⁃76.
|
|
GUAN Z C, LIU Y W, SHI Y C, et al. Experimental study on influence of vertical casing on magnetic surveying parameters of measurement while drilling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4): 72⁃76.
|