Please wait a minute...
Current Issue
2020, Vol.40 No.3  Publication date:29 June 2020
Previous Issue Next Issue
  • Simulation and Prediction of Particle Property on Erosion Wear of Special⁃Shaped Pipe Fittings of Gas Transmission Pipeline
  • Xu Xin, Wu Yuguo, Sun Yan
  • 2020, 40 (3): 45-51. DOI:10.3969/j.issn.1672-6952.2020.03.009
  • Abstract ( ) HTML ( ) PDF ( 2603KB ) ( )   
  • In the gas pipeline, the gas⁃solid two⁃phase flow causes erosion and wear on the inner wall of the pipeline, and the erosion wear in the tapered tube is particularly serious. Using the knowledge of computational fluid dynamics, the model was established by CFD simulation software, the fluid⁃solid two⁃way coupling equation was used, and standard k⁃ε model and discrete⁃phase model (DPM) were used for analysis. Investigating the influence of inlet flow velocity, solid particle size and particle mass flow rate on the wear and tear of reducing pipe, and predicting the location of the tapered tube where erosion wear is likely to occur and the optimum flow rate of natural gas. The results show that the inlet flow rate increased from 5 m/s to 25 m/s, the maximum erosion rate of the tapered tube increased first, then decreased and then increased. When the inlet flow rate is 15 m/s, the erosion rate reached the minimum, which is 1.76×10-6 kg/(m2•s). The particle size increases from 0.5 mm to 4.5 mm, and the maximum erosion rate increases from 4.23×10-6 kg/(m2•s)to 7.56×10-6 kg/(m2•s), and then gradually decreases to 2.68×10-6 kg/(m2•s). The particle mass flow rate increases from 0.1 kg/s to 0.6 kg/s, when the inlet flow rate is 15 m/s, the maximum erosion rate increases from 1.76×10-6 kg/(m2•s) to 1.00×10-5 kg/(m2•s). The erosion wear area is mainly located on the lower wall surface of the tapered tube throat, the lower wall of the tapered tube segment from the 2D region of the throat and the upper wall of the tapered tube segment outside the 2D region, and the erosion wear area of the upper wall surface is approximated by "U" type symmetrical distribution. During gas transfer, the optimum inlet flow rate of gas through the reducing pipeline should be 15 m/s. In order to prevent erosion and wear, it should also be noted that the particle size should not be too small, and the mass flow rate should be controlled within a reasonable range.
  • Related Articles | Metrics