1 |
Shao Z P, Haile S M. A high⁃performance cathode for the next generation of solid⁃oxide fuel cells[J]. Nature, 2004, 431: 170⁃173.
|
2 |
Singhal S C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics, 2000, 135: 305⁃313.
|
3 |
Majumdar S, Claar T, Flandermeyer B. Stress and fracture behavior of monolithic fuel cell tapes[J]. Journal of the American Ceramic Society, 1986,69(8): 628⁃633.
|
4 |
Toebes L, Bitter H, Dillen V, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers[J]. Catalysis Today, 2002, 76(1): 33⁃42.
|
5 |
Lay E, Gauthier G, Rosini S, et al. Ce⁃substituted LSCM as new anode materialfor SOFC operating in dry methane[J].Solid State Ionics,2008, 179(27):1562⁃1566.
|
6 |
Skarmoutsos D, Nikolopoulos P, Tietz F, et al. Physical characterization of Y0.25Zr0.60Ti0.15O2- x and its performance as a Ni/Y0.25Z0.60Ti0.15O2- x anode cermet in an SOFC[J]. Solid State Ionics, 2004, 170(3): 153⁃158.
|
7 |
Yano M, Tomita A, Sano M, et al. Recent advances in single⁃chamber solid oxide fuel cells: A review[J]. Solid State Ionics, 2007, 177(39⁃40): 3351⁃3359.
|
8 |
Kamata K, Nakamura T, Sata T. Synthesis and properties of the metallic(IV) CaMoO3[J]. Chemistry Letters, 1975, 21: 81⁃86.
|
9 |
McCarthy G J, Gooden C E. Compound formation in the system SrMoO3[J]. Journal of Inorganic and Nuclear Chemistry, 1973, 35(8):2669⁃2672.
|
10 |
Brixner L H. X⁃ray study and electrical properties of system BaxSr1- xMoO3[J]. Journal of Inorganic and Nuclear Chemistry, 1960, 14: 225⁃230.
|
11 |
Dompablo M E A, Krich C, Nava Avedano J, et al. In quest of cathode materials for Ca ion batteries: The CaMO3 perovskites (M=Mo, Cr, Mn, Fe, Co, and Ni)[J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19966⁃19972.
|
12 |
Tariq S, Mubarak A, Saher S, et al. Quantum density functional theory studies of structural, elastic, and opto⁃electronic properties of ZMoO3 (Z = Ba and Sr) under pressure[J]. Chinese Physics B, 2019, 28(6): 066101.
|
13 |
Xiao M G, Siew H C, Qing L L, et al. Solid oxide fuel cell anode materials for direct hydrocarbon utilization[J]. Advanced Energy Materials, 2012, 2(10): 1156⁃1181.
|
14 |
Peter I C, Christophe P, Rong L, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Advanced Energy Materials, 2011, 1(3): 314⁃332.
|
15 |
Manasa P, Ki T L. Characterization of novel Ba2LnMoO6 (Ln=Pr and Nd) double perovskite as the anode material for hydrocarbon⁃fueled solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2018, 737: 152⁃159.
|
16 |
Brandon S, Michael D G. SOFC anodes prepared by infiltration of strontium molybdate into porous YSZ[J]. Pharmacotherapy, 2014, 34(5):506⁃520.
|
17 |
Kurosaki K, Oyama T, Muta H, et al. Thermoelectric properties of perovskite type barium molybdate[J]. Journal of Alloys and Compounds, 2004, 372(1⁃2): 65⁃69.
|
18 |
Xiao M X, Yang L P, Yi Y Z, et al. From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media[J]. Comosites Part B: Engineering, 2020, 198: 108214.
|
19 |
Yamanaka S, Kurosaki K, Maekawa T, et al. Thermochemical and thermophysical properties of alkaline⁃earth perovskites[J]. Journal of Nuclear Materials, 2005, 344(1⁃3): 61⁃66.
|
20 |
Lee K T, Manthiram A. Characterization of Nd1- xSrxCoO3- δ (0≤x≤0.5) Cathode materials for intermediate temperature SOFCs[J]. Journal of the Electrochemical Society, 2005, 152(1): 197⁃204.
|
21 |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751⁃767.
|
22 |
Kun Z, Lei G, Ran R, et al. Synthesis, characterization and evaluation of cation⁃ordered LnBaCo2O5+ δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Materialia, 2008, 56(17): 4876⁃4889.
|
23 |
Lee H J, Hampel A, Dreyer C E. First⁃principles study of the electronic, magnetic, and crystal structure of perovskite molybdates[J]. Physical Review Materials, 2021, 5: 085001.
|
24 |
Aguadero A, Calle C, Alonso J A, et al. Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode[J]. Journal of Power Sources, 2009, 192(1):78⁃83.
|
25 |
Belyakov S A, Shkerin S N, Kellerman D G, et al. The effect of Mo concentration on the electrical properties of CaV1- xMoxO3- δ (x=0.2-0.6) anode materials for solid oxide fuel cells[J]. Materials Research Bulletin, 2020, 129: 110904.
|
26 |
Belyakov S A, Evgeny Y G, Anton V K. The Influence of oxygen activity on phase composition, crystal structure, and electrical conductivity of CaV1– xMoxO3± δ[J]. Crystals, 2022, 12(3): 419.
|
27 |
Martínez C R, Alonso J A, Alonso A, et al. New SrMo1- xCrxO3- δ perovskites as anodes in solid⁃oxide fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39: 4067⁃4073.
|
28 |
Martinez C R, Alonso J A, Aguadero A, et al. Optimized energy conversion efficiency in solid⁃oxide fuel cells implementing SrMo1- xFexO3- δ perovskites as anodes[J]. Journal of Power Sources, 2012, 208: 153⁃158.
|
29 |
Martínez C R, Alonso J A, Diaz F M T. SrMo0.9Co0.1O3- δ: A potential anode for intermediate⁃temperature solid⁃oxide fuel cells (IT⁃SOFC)[J]. Journal of Power Sources, 2014, 258: 76⁃82.
|
30 |
Zhang S B, Sun Y P, Zhao B C, et al. Influence of Ni doping on the properties of perovskite molybdates SrMo1- xNixO3(0.02≤x≤0.08)[J]. Solid State Communications, 2007, 142: 671⁃675.
|
31 |
Cascos V, José A A, Diaz F M T. Novel Mg⁃doped SrMoO3 perovskites designed as anode materials for solid oxide fuel cells[J]. Materials, 2016, 9: 588.
|
32 |
Cascos V, Tronscoso L, Alonso J A, et al. Design of new Ga⁃doped SrMoO3 perovskites performing as anode materials in SOFC[J]. Renewable Energy, 2017, 111: 476⁃483.
|
33 |
Hopper H A, Le J, Cheng J, et al. An investigation of the optical properties and water splitting potential of the colored metallic perovskites Sr1- xBaxMoO3[J]. Journal of Solid State Chemistry, 2016, 234: 87⁃92.
|
34 |
Zhang S B, Sun Y P, Zhao B C, et al. Influence of Pr⁃doping on structural, electronic transport, magnetic properties of perovskite molybdates Sr1- xPrxMoO3(0≤x≤0.15)[J]. Solid State Communications, 2006, 138: 123⁃128.
|
35 |
Sydyknazar S, Cascos V, Diaz F M T, et al. Design, synthesis and performance of Ba⁃doped derivatives of SrMo0.9Fe0.1O3- δ perovskite as anode materials in SOFCs[J]. Journal of Materiomics, 2019, 5(2): 280⁃285.
|
36 |
Chavez E, Mueller M, Mogni L, et al. Study of LnBaCo2O6– δ(Ln=Pr, Nd, Sm and Gd)double perovskites as new cathode material for IT⁃SOFC[J]. Journal of Physics: Conference Series, 2009, 167: 12043.
|
37 |
Jing L D, Liu X H, Li Y T. Synthesis and optical properties of novel red phosphors Sr3MoO6: Eu3+ with highly enhanced emission by W6+ doping[J]. Journal of Luminescence, 2015, 158: 351⁃355.
|
38 |
Paiva D V M, Silva M A S, Sombra A S B, et al. Properties of the Sr3MoO6 electroceramic for RF/microwave devices[J]. Journal of Alloys and Compounds, 2018, 748: 766⁃773.
|
39 |
José Juan A F, Reginaldo M S, María Liliana Á R, et al. Synthesis, characterization and kinetic study of the Sr2FeMoO6- δ double perovskite: New findings on the calcination of one of its precursors[J]. International Journal of Hydrogen Energy, 2021, 46(51): 26185⁃26196.
|
40 |
Marrero D, Peña J, Ruiz J, et al. Phase stability and electrical conductivity of Sr2MgMoO6- δ anode[J]. Mater Res Bull, 2008, 43: 2441⁃2450.
|
41 |
Ji Y, Huang Y, Ying J, et al. Electrochemical performance of La⁃doped Sr2MgMoO6- δ in natural gas[J]. Electrochem Commun, 2007, 9: 1881⁃1885.
|
42 |
Azad A K, Eriksson S. Formation of a cubic Sr2MnWO6 phase at elevated temperature; a neutron powder diffraction study[J]. Solid State Commun, 2003, 126: 503⁃508.
|
43 |
Azad A K, Eriksson S, Ivanov S, et al. structural and magnetic characterisation of the double perovskite A2MnMoO6 (A =Ba,Sr)[J]. Journal of Alloys Compound, 2004, 364: 77⁃82.
|
44 |
姚桂彬,蔡洪东,张磊磊,等. A位缺位双钙钛矿Sr1.85MgMoO6- δ阳极的电化学性能[J].辽宁石油化工大学学报,2019,39(4):28⁃33.
|
45 |
Vasala S, Yamauchi H, Karppinen M. Role of SrMoO4 in Sr2MgMoO6 synthesis[J]. Journal of Solid State Chemistry, 2011, 184: 1312⁃1317.
|
46 |
Lubov S, Elena F, Dmitry M, et al. Undoped Sr2MMoO6 double perovskite molybdates (M=Ni, Mg, Fe) as promising anode materials for solid oxide fuel cells[J]. Materials, 2021, 14: 1715.
|
47 |
Niu B B, Jin F J, Li J C, et al. Highly carbone and sulfuretolerant Sr2TiMoO6- δ double perovskite anode for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44: 20404⁃20415.
|
48 |
Kun Z, Konrad S. A⁃ and B⁃site doping effect on physicochemical properties of Sr2- xBaxMMoO6 (M=Mg, Mn, Fe) double perovskites candidate anode materials for SOFCs[J]. Functional Materials Letters, 2016, 9(4): 1641002.
|