1 |
Liu J W, Xu Y N, Qin C Y, et al. Simple fluorene oxadiazole⁃based Ir(Ⅲ) complexes with AIPE properties: Synthesis, explosive detection and electroluminescence studies[J]. Dalton Trans., 2019, 48(35): 13305⁃13314.
|
2 |
Yang T, Feng C, Zhao P, et al. Fluorescent electronic tongue supported with water⁃borne polyurethane for the discrimination of nitroaromatics in aqueous solution[J]. J. Mater. Chem. C, 2020, 8(7): 2500⁃2506.
|
3 |
Che W, Li G, Liu X, et al. Selective sensing of 2,4,6⁃trinitrophenol (TNP) in aqueous media with ''aggregation⁃induced emission enhancement'' (AIEE)⁃active iridium(Ⅲ) complexes[J]. Chem. Commun., 2018, 54(14): 1730⁃1733.
|
4 |
Wen L L, Hou X G, Shan G G, et al. Rational molecular design of aggregation⁃induced emission cationic Ir(Ⅲ) phosphors achieving supersensitive and selective detection of nitroaromatic explosives[J]. J. Mater. Chem. C, 2017, 5(41): 10847⁃10854.
|
5 |
Abuzalat O, Wong D, Park S S, et al. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection[J]. Nanoscale, 2020, 12(25): 13523⁃13530.
|
6 |
Alam P, Kaur G, Kachwal V, et al. Highly sensitive explosive sensing by ''aggregation induced phosphorescence'' active cyclometalated iridium(Ⅲ) complexes[J]. J. Mater. Chem. C, 2015, 3(21): 5450⁃5456.
|
7 |
Topuz F, Uyar T. Atomic layer deposition of palladium nanoparticles on a functional electrospun poly⁃cyclodextrin nanoweb as a flexible and reusable heterogeneous nanocatalyst for the reduction of nitroaromatic compounds[J]. Nanoscale Advances, 2019, 1(10): 4082⁃4089.
|
8 |
Yang H, Li H, Zhou M, et al. A relationship between membrane permeation and partitioning of nitroaromatic explosives and their functional groups. A computational study[J]. Phys. Chem. Chem. Phys., 2020, 22(16): 8791⁃8799.
|
9 |
Qin J H, Huang Y D, Shi M Y, et al. Aqueous⁃phase detection of antibiotics and nitroaromatic explosives by an alkali⁃resistant Zn⁃MOF directed by an ionic liquid[J]. RSC Adv., 2020, 10(3): 1439⁃1446.
|
10 |
Di L, Xia Z, Li J, et al. Selective sensing and visualization of pesticides by ABW⁃type metal⁃organic framework based luminescent sensors[J]. RSC Adv., 2019, 9(66): 38469⁃38476.
|
11 |
邢杨, 王浩, 黄丽, 等. 富电子LMOFs对有机农药的高效荧光检测[J]. 精细化工, 2020, 37(4): 682⁃688.
|
12 |
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide⁃functionalized metal⁃organic framework hybrids[J]. Inorg. Chem. Front., 2021, 8(1): 201⁃233.
|
13 |
狄玲, 陈放, 付荣荣, 等. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830⁃3838.
|
14 |
Di L, Xia Z, Wang H, et al. Switchable and adjustable AIE activity of Pt(Ⅱ) complexes achieving swift⁃responding and highly sensitive oxygen sensing[J]. Sens. Actuators B, 2021, 326: 128987.
|
15 |
Deng P, Pei Y, Liu M, et al. A rapid ''on⁃off⁃on'' mitochondria⁃targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish[J]. RSC Adv., 2021, 11(13): 7610⁃7620.
|
16 |
Di L, Xing Y, Wang X, et al. The influence of molecular structure on collision radius for optical sensing of molecular oxygen based on cyclometalated Ir(Ⅲ) complexes[J]. RSC Adv., 2018, 8(71): 41040⁃41047.
|
17 |
郑宇, 戴光阔, 于潇贺, 等. 铂配合物对4⁃硝基甲苯的高效荧光检测[J]. 辽宁石油化工大学学报, 2020, 40(1): 15⁃19.
|
18 |
Xing Y, Wang L, Liu C, et al. Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum(II) complexes[J]. Sens. Actuators B, 2020, 304: 127378.
|
19 |
狄玲, 操青松, 李声笛, 等. 含三苯胺铱(Ⅲ)配合物对硝基芳香化合物的高效发光检测[J]. 精细化工, 2020, 37(7): 1408⁃1413.
|
20 |
Sathish V, Ramdass A, Velayudham M, et al. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives[J]. Dalton Trans., 2017, 46(48): 16738⁃16769.
|
21 |
Zhao K Y, Mao H T, Wen L L, et al. A simple strategy to achieve remarkable mechanochromism of cationic Ir(Ⅲ) phosphors through subtle ligand modification[J]. J. Mater. Chem. C, 2018, 6(43): 11686⁃11693.
|
22 |
Xing Y, Qiao C, Li X, et al. The dependence of oxygen sensitivity on molecular structures of Ir(Ⅲ) complexes and application for photostable and reversible luminescent oxygen sensing[J]. RSC Adv., 2019, 9(27): 15370⁃15380.
|
23 |
Xing Y, Liu C, Song X, et al. Photostable trifluoromethyl⁃substituted platinum(Ⅱ) emitters for continuous monitoring of molecular oxygen[J]. J. Mater. Chem. C, 2015, 3(10): 2166⁃2174.
|
24 |
Xing Y, Liu C, Xiu J H, et al. Photostable fluorophenyl⁃substituted cyclometalated platinum(Ⅱ) emitters for monitoring of molecular oxygen in real time[J]. Inorg. Chem., 2015, 54(16): 7783⁃7790.
|
25 |
Dai Y, Zhou H, Song X D, et al. Two (5,5)⁃connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786⁃2794.
|
26 |
Di L, Zhang J J, Liu S Q, et al. Two dynamic abw⁃type metal organic frameworks built of pentacarboxylate and Zn2+ as photoluminescent probes of nitroaromatics[J]. Cryst. Growth Des., 2016, 16(8): 4539⁃4546.
|
27 |
Williams L, Mukherjee A, Dasgupta A, et al. Monitoring the role of site chemistry on the formation energy of perovskites via deep learning analysis of Hirshfeld surfaces[J]. J. Mater. Chem. C, 2021, 9(34): 11153⁃11162.
|