1 |
Wrublewski D T. Analysis for science librarians of the 2019 nobel prize in chemistry: Lithium⁃ion batteries[J]. Science & Technology Libraries, 2020, 39(1): 1⁃17.
|
2 |
Zhen S, Hong Z, Xiang Z, et al. Complex spinel titanate nanowires for a high rate lithium⁃ion battery[J]. Energy & Environmental Science, 2011, 4: 1886⁃1891.
|
3 |
Hong Z, Wei M, Ding X, et al. Li2ZnTi3O8 nanorods: A new anode material for lithium⁃ion battery[J]. Electrochemistry Communications, 2010, 12(6): 720⁃723.
|
4 |
Nikiforova P A, Stenina I A, Kulova T L, et al. Effect of particle size on the conductive and electrochemical properties of Li2ZnTi3O8[J]. Inorganic Materials, 2016, 52(11): 1137⁃1142.
|
5 |
Hao Y, Lai Q, Liu D, et al. Synthesis by citric acid sol⁃gel method and electrochemical properties of Li4Ti5O12 anode material for lithium⁃ion battery[J]. Materials Chemistry & Physics, 2005, 94(2⁃3): 382⁃387.
|
6 |
Li H, Li Z, Cui Y, et al. Long⁃cycled Li2ZnTi3O8/TiO2 composite anode material synthesized via a one⁃pot co⁃precipitation method for lithium⁃ion batteries[J]. New Journal of Chemistry, 2016, 41(3): 975⁃981.
|
7 |
Chi C, Ai C, He Y, et al. High performance Li2ZnTi3O8 coated with N⁃doped carbon as an anode material for lithium⁃ion batteries[J]. Journal of Alloys & Compounds, 2017, 705(2): 438⁃444.
|
8 |
Yi T F, Wu J Z, Yuan J, et al. Rapid lithiation and delithiation property of V⁃doped Li2ZnTi3O8 as anode material for lithium⁃ion battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 505⁃509.
|
9 |
Wang X, Wang L, Chen B, et al. MOFs as reactant: In situ synthesis of Li2ZnTi3O8@C-N nanocomposites as high performance anodes for lithium⁃ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 775: 311⁃319.
|
10 |
Li H, Li Z, Liang X, et al. High rate performance Fe doped lithium zinc titanate anode material synthesized by one⁃pot co⁃precipitation for lithium ion battery[J]. Materials Letters, 2016, 192(1): 128⁃132.
|
11 |
Xu Y, Hong Z, Xia L, et al. One step sol⁃gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium⁃ion storage properties[J]. Electrochimica Acta, 2013, 88(2): 74⁃78.
|
12 |
Tang H, Tang Z, Du C, et al. Ag⁃doped Li2ZnTi3O8 as a high rate anode material for rechargeable lithium⁃ion batteries[J]. Electrochimica Acta, 2014, 120: 187⁃192.
|
13 |
Chen C, Ai C, Liu X, et al. Advanced electrochemical properties of Ce⁃modified Li2ZnTi3O8 anode material for lithium⁃ion batteries[J]. Electrochimica Acta, 2017, 227(12): 285⁃293.
|
14 |
Tang H, Zhu J, Tang Z, et al. Al⁃doped Li2ZnTi3O8 as an effective anode material for lithium⁃ion batteries with good rate capabilities[J]. Journal of Electroanalytical Chemistry, 2014, 731(8): 60⁃66.
|
15 |
Shen Z, Zhang Z, Wang S, et al. Mg2+⁃W6+ co⁃doped Li2ZnTi3O8 anode with outstanding room, high and low temperature electrochemical performance for lithium⁃ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6: 3288⁃3294.
|
16 |
Liu T, Tang H, Liu J, et al. Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent[J]. Electrochimica Acta, 2018, 259(10): 28⁃35.
|
17 |
Ren Y, Ren Y, Lu P, et al. Synthesis and high cycle performance of Li2ZnTi3O8/C anode material promoted by asphalt as a carbon precursor[J]. RSC Advances, 2016, 6(55): 49298⁃49306.
|
18 |
Wang S, Wang L, Meng Z, et al. Li2ZnTi3O8/graphene nanocomposite as a high⁃performance anode material for lithium⁃ion batteries[J]. RSC Advances, 2018, 8(55): 31628⁃31632.
|
19 |
Li B, Li X, Li W, et al. Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high⁃performance lithium⁃ion batteries[J]. ChemNanoMat, 2016, 2(4): 281⁃289.
|
20 |
Jiménez P, Levillain E, Alévêque O, et al. Lithium N⁃doped polyaniline as a high⁃performance electroactive material for rechargeable batteries[J]. Angewandte Chemie, 2017, 56(6): 1553⁃1556.
|
21 |
Li J, Tang X, Li H, et al. Synthesis and thermoelectric properties of hydrochloric acid⁃doped polyaniline[J]. Synthetic Metals, 2010, 160(11⁃12): 1153⁃1158.
|
22 |
Mo L, Zheng H. Solid coated Li4Ti5O12(LTO) using polyaniline (PANI) as anode materials for improving thermal safety for lithium ion battery[J]. Energy Reports, 2020, 6(10): 2913⁃2918.
|
23 |
Wang H Y, Yoshio M. Carbon⁃coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium⁃ion battery[J]. Journal of Power Source, 2001, 93: 123⁃129.
|
24 |
Yildiz S, Şahan H. In situ synthesis of reduced graphite oxide⁃Li2ZnTi3O8 composite as a high rate anode material for lithium⁃ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): 2002⁃2012.
|
25 |
Lan T, Chen L, Liu Y, et al. Nanocomposite Li2ZnTi3O8/C with enhanced electrochemical performances for lithium⁃ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 794: 120⁃125.
|