1 |
Nasouri K, Bahrambeygi H, Rabbi A, et al. Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks[J]. Journal of Applied Polymer Science, 2012, 126(1):127⁃135.
|
2 |
Niu H T, Zhang J, Xie Z L, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J]. Carbon, 2011, 49(7):2380⁃2388.
|
3 |
Jo E M, Yeo J G, Kim D K, et al. Preparation of well⁃controlled porous carbon nanofiber materials by varying the compatibility of polymer blends[J]. Polymer International, 2014, 63(8):1471⁃1477.
|
4 |
Yao Y C, Wu H L, Huang L, et al. Nitrogen⁃enriched hierarchically porous carbon nanofiber network as a binder⁃free electrode for high⁃performance supercapacitors[J]. Electrochimica Acta, 2017, 246:606⁃614.
|
5 |
Wu Y, Jiang Y, Shi J N, et al. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance[J]. Small, 2017, 13(22):1700129.
|
6 |
Wong S C, Baji A, Leng S. Effect of fiber diameter on tensile properties of electrospun poly(3⁃caprolactone)[J]. Polymer, 2008, 49(21):4713⁃4722.
|
7 |
He D, Hu B, Yao Q F, et al. Large⁃scale synthesis of flexible free⁃standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles[J]. ACS Nano, 2009, 3(12):3993⁃4002.
|
8 |
Dong H, Strawhecker K E, Snyder J F, et al. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization[J]. Carbohydrate Polymers, 2012, 87(4):2488⁃2495.
|
9 |
Abeykoon N C, Bonso J S, Ferraris J P. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends[J]. RSC Advances, 2015, 5(26):19865⁃19873.
|
10 |
Wei K, Kim K O, Song K H, et al. Nitrogen⁃ and oxygen⁃containing porous ultrafine carbon nanofiber: A highly flexible electrode material for supercapacitor[J]. Journal of Materials Science & Technology, 2017, 33(5):424⁃431.
|
11 |
Zhang T, Huang D Q, Yang Y, et al. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance[J]. Materials Science & Engineering B, 2013, 178(1):1⁃9.
|
12 |
Li G, Xie T S, Yang S L, et al. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers[J]. Journal of Physical Chemistry C, 2012, 116(16):9196⁃9201.
|
13 |
He J X, Zhao S Y, Lian Y P, et al. Graphene⁃doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high⁃performance anodes for lithium⁃ion batteries[J]. Electrochimica Acta, 2017, 229:306⁃315.
|
14 |
Peng Y T, Lo C T. Electrospun porous carbon nanofibers as lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2015, 19(11):3401⁃3410.
|
15 |
Zhao C Y, Kong J H, Yao X Y, et al. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high⁃performance anodes for lithium⁃ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6392⁃6398.
|
16 |
Zhang L S, Huang Y P, Zhang Y F, et al. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder⁃free anodes for highly reversible lithium storage[J]. Advanced Materials Interfaces, 2016, 3(2):1500467.
|
17 |
Fei L, Williams B P, Yoo S H, et al. A general approach to fabricate free⁃standing metal sulfides@carbon nanofiber network as lithium ion battery anodes[J]. Chemical Communications, 2016, 52(7):1501⁃1504.
|
18 |
Kajiwara T, Iki N, Yamashita M. Transition metal and lanthanide cluster complexes constructed with thiacalix[n]arene and its derivatives[J]. Coordination Chemistry Reviews, 2007, 251:1734⁃1746.
|
19 |
Hang X X, Bi Y F. Thiacalix[4]arene⁃supported molecular clusters for catalytic applications[J]. Dalton Transactions, 2021, 50(11):3749⁃3758.
|
20 |
Shi C, Zhang M, Hang X X, et al. Assembly of thiacalix[4]arene⁃supported high⁃nuclearity Cd24 cluster with enhanced photocatalytic activity[J]. Nanoscale, 2018, 10(30):14448⁃14454.
|
21 |
Wang Z, Wang M L, He K, et al. Co9S8@CN composites obtained from thiacalix[4]arene‐based coordination polymers for supercapacitor applications[J]. Chemistry⁃An Asian Journal, 2021, 16: 1486⁃1492.
|
22 |
Han X, Ai F X, Wang X, et al. Thiacalixarene⁃supported Co24 nanocluster derived octahedral Co9S8 nanoparticles in N⁃doped carbon for superior Li⁃ion storage[J]. Polyhedron,2019, 171:279⁃284.
|
23 |
Yang S R, Ai F X, Li Z P, et al. N⁃doped carbon nanofibers encapsulating CoO@Co9S8 nanoparticles: Preparation from S⁃rich Co32 coordination cluster precursors by electrospinning and application for superior Li⁃ion storage[J].Chemical Research in Chinese Universities, 2022, 38(2):603⁃608.
|
24 |
Geng D T, Han X, Bi Y F, et al. Merohedral icosahedral M48 (M=CoII,NiII) cage clusters supported by thiacalix[4]arene[J]. Chemical Science, 2018, 9(45):8535⁃8541.
|
25 |
Chen Y M, Li X Y, Park K, et al. Hollow nanotubes of N‐doped carbon on CoS [J]. Angewandte Chemie International Edition, 2016, 55:15831.
|
26 |
Huang J N, Cao Y H, Huang Z Y, et al. Comparatively thermal and crystalline study of poly(methyl⁃methacrylate)/polyacrylonitrile hybrids: Core⁃shell hollow fibers, porous fibers, and thin films[J]. Macromolecular Materials and Engineering, 2016, 301(11):1327⁃1336.
|
27 |
Ren H B, Gu C P, Zhao J J, et al. Co9S8@MoS2 core⁃shell nanostructure anchored on reduced graphene oxide with improved electrochemical performance for lithium⁃ion batteries[J]. Applied Surface Science, 2019, 473:918⁃927.
|
28 |
Yang J, Yu C, Fan X M, et al. Electroactive edge site⁃enriched nickel⁃cobalt sulfide into graphene frameworks for high⁃performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4):1299⁃1307.
|
29 |
Qin W, Han L, Bi H, et al. Hydrogen storage in a chemical bond stabilized Co9S8⁃graphene layered structure[J]. Nanoscale, 2015, 7:20180⁃20187.
|
30 |
Zeng P Y, Li J W, Ye M, et al. In situ formation of Co9S8/N⁃C hollow nanospheres by pyrolysis and sulfurization of ZIF⁃67 for high⁃performance lithium⁃ion batteries[J]. Chemistry⁃A European Journal, 2017, 23(40):9436.
|
31 |
Shi W H, Zhu J X, Rui X H, et al. Controlled synthesis of carbon⁃coated cobalt sulfide nanostructures in oil phase with enhanced li storage performances[J]. ACS Applied Materials & Interfaces, 2012, 4(6):2999⁃3006. (编辑 宋官龙)
|