传统水力压裂物理模拟方法在定量研究裂缝形态和动态监测裂缝扩展路径方面存在一定不足,难以精确评价裂缝起裂与扩展的动态过程,因此亟需发展数字化与智能化技术,以提高水力压裂物理模拟方法的精确性。系统调研了数字岩心重构、声发射定位和分布式光纤监测等技术的方法原理、研究现状和发展方向,探究了多方法联合监测实验过程中数据获取、裂缝重构和数据解释的关键技术原理,厘清了水力压裂物理模拟中的试样制备、方法组合和适用范围,指出了真三轴水力压裂物理模拟非平面、非对称和非均衡的起裂和扩展特征,并进行了展望,以期帮助研究人员深入认识复杂裂缝扩展的动态过程,水力压裂物理模拟方法的数字化和智能化是未来研究趋势,为水力压裂物理模拟技术发展、实验方案设计和现场应用提供参考。
研究了硫化温度对NiW/Al2O3加氢处理催化剂在硫化过程中催化脱硫、脱氮、脱酸性能的影响;对硫化不完全的催化剂进行重新硫化,并对其加氢性能进行了研究;采用物理吸附仪(BET)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)等技术对硫化态催化剂进行了结构表征。结果表明,催化剂上硫、碳质量分数和硫化度随着硫化温度的升高而增加,这导致催化剂的比表面积、孔容和平均孔径均下降,硫化后催化剂的活性相由低活性的W6+、Ni2+相向高活性的W4+、Ni-W-S相转变;重新硫化后催化剂的孔容、平均孔径均下降,比表面积、硫质量分数、碳质量分数均增加,碳质量分数的增加导致裸露的活性中心数减少,降低催化剂表面W与Al的原子个数比,硫化态活性金属发生聚集,降低催化剂的活性,表明重新硫化催化剂的活性难以达到完全硫化态催化剂的活性。
ZSM?5分子筛在石油化工领域有广泛的应用,但是其传统合成方法使用大量的有机模板剂,因此造成严重的环境和成本问题。以硅酸四乙酯为硅源、十八水合硫酸铝为铝源,以成品HZSM?5分子筛的碱溶解液代替有机模板剂,对ZSM?5分子筛的水热合成过程进行了研究;采用XRD、TEM、SEM、氮气物理吸附、热重分析等手段对合成的分子筛进行了表征。结果表明,在无有机模板剂的条件下,成品HZSM?5分子筛的碱溶解液可以成功诱导合成ZSM?5分子筛;ZSM?5分子筛的结晶度和比表面积比传统方法合成的样品低。该研究实现了分子筛绿色合成工艺以及多级孔分子筛后处理合成工艺的有机结合。
随着人类社会对清洁能源需求的持续增加,燃料电池因具有高效、安全以及应用场景广泛等优点,受到研究者们的广泛关注。其中,阴离子交换膜燃料电池因具有环境友好、可使用非贵金属催化剂以及高安全稳定性等特点展现出广阔的应用前景。作为阴离子交换膜燃料电池的核心元件,阴离子交换膜起到隔离阳极与阴极直接接触以及传导氢氧根离子等作用,对阴离子交换膜燃料电池的性能起到至关重要的作用。在阴离子交换膜发展过程中,氢氧根离子离子电导率低与离子电导率稳定性差等问题成为制约其发展的关键技术难题。此外,发展柔性阴离子交换膜对促进阴离子交换膜燃料电池的进一步商业化具有积极的作用。基于此,从聚合物分子链设计、结构优化设计、新材料合成与复合三个方面综述了近年来国内外关于柔性阴离子交换膜的研究进展。
采用溶胶凝胶法制备了n(Ag+)/n(Ti4+)分别为0.001、0.003、0.005、0.010、0.030和0.050的Ag掺杂的粉体及陶瓷空心微珠负载TiO2光催化剂;通过SEM、XRD和Uv?Vis DRS等手段对所制备的催化剂进行了表征分析,并以氙灯为光源对其光催化性能进行了测试;结合第一性原理,对掺杂机理进行了分析。结果表明,0.005Ag?TiO2粉体在90 min光催化测试中对10 mg/L亚甲基蓝的降解率为76%,最佳n(Ag+)/n(Ti4+)为0.005,陶瓷空心微珠负载型催化剂90 min光催化测试的降解率为97%;Ag掺杂能够在TiO2体系中引入杂质能级,使价带电子可以通过分级跃迁的方式到达导带,计算结果与实验结果的变化趋势相一致。
吐哈丘陵油田的低渗透油藏在注水开发过程中表现出部分油井见水早、含水上升快的特征,动态分析显示储层中可能存在优势通道或裂缝。为进一步改善油藏开发后期的开发效果,提高原油采收率,有必要核实、确定储层微裂缝发育情况。在水洗检查井岩心描述的基础上,开展了储层裂缝发育及分布研究,提出了一种基于测井曲线的裂缝发育层位的判断方法;分析了2口井测井资料,并对吸水剖面进行了对比。结果表明,该判断方法可行、可靠,为吐哈丘陵油田改善水驱开发效果、有效动用及开采剩余油提供了技术支撑。
在含蜡原油的开采和运输过程中,石蜡容易沉积到壁面并形成蜡沉积。近年来,微生物清防蜡技术因其经济环保的优点而受到广泛关注。从原油污泥中筛选出五种菌株,通过对其石蜡降解率及表面疏水性的测定,选定一种高效的石蜡降解菌B3,经鉴定为中间布鲁氏菌(Bruella intermedia)。结果表明,菌B3在温度为40 ℃、初始pH为6、摇床转速为160 r/min的条件下表现出最佳的生长活性,并且对石蜡的降解效果最为显著;当菌B3以石蜡为碳源进行生长代谢时,能够产生脂肽类生物表面活性剂,使液体石蜡的乳化系数达到52.5%;菌B3与原油作用7 d后,防蜡率高达77.2%,在41 ℃的温度下降黏率达到50.2%。综上,菌B3能有效降解石蜡,提高原油流动性,减少蜡沉积。
立式吸附塔对烟气中二氧化碳的脱除至关重要,但其复杂多变的吸附过程对优化生产提出了挑战,因此实现气体的均匀分布至关重要。通过计算流体力学(CFD),对各种气体分布器进行评估,并比较了无分布器、圆锥形分布器(Ⅰ型气体分布器)、圆台形分布器(Ⅱ型气体分布器)及筛板加挡板的组合型气体分布器(Ⅲ型气体分布器)的性能;根据速度矢量平滑度和曲线均匀性对实验结果进行了评价。结果表明,单一筛板的不均匀气流集中在塔中心;Ⅰ型气体分布器和Ⅱ型气体分布器可改善气流流通的均匀性,但效果仍不理想;Ⅲ型气体分布器的气流均匀性显著提高;在挡板直径(d)为100 mm、筛板与挡板的距离(h)为150 mm时,气流分布最均匀,对二氧化碳的吸附效果好。
采用VOF模型模拟了熔融镍液滴在等离子喷涂沉积过程中的凝固和飞溅现象,并通过动量方程与流体体积法相结合的方法分析了颗粒的自由表面;利用焓法对包含相变的热传递过程进行了建模;通过设定三组不同的实验条件,模拟镍液滴形成涂层的过程,深入分析了镍涂层的形成机理。结果表明,液滴的撞击速度越大,其扩展系数越大,并且在喷涂过程中会产生飞溅现象;基板温度越高,液滴的扩散距离越大;液滴直径越大,扩散距离越大,但并非呈严格的线性关系,并且其凝固形成的薄片越厚。
利用有限元分析软件COMSOL Multiphysics,模拟了单泡超声空化的动力学特性;通过求解考虑能量黏滞损耗和球形气泡振动引起的辐射阻尼的Rayleigh?Plesset模型,对超声正弦波、方波和三角波驱动下单一空化气泡在水中振动时的运动过程进行了仿真,分析了气泡半径、气泡壁的运动速度、气泡壁的动能和气泡内压力的变化。结果表明,在相同条件下,正弦波驱动稳定性最优;方波驱动具有最好的空化效果,但发生空化的时间最长;三角波的空化效果最弱;在三种波的驱动下,第1次塌缩时气泡壁的运动动能最大,在气泡塌缩到半径最小时气泡内压力最大;相较于方波和三角波驱动,正弦波驱动下气泡内的最大压力最大。
在化工厂这类高风险地区,火灾安全始终备受关注。尽管烟雾及火焰报警器已被广泛应用,但仍然存在只用于单点检测以及易受环境影响等问题。针对此类问题,设计并实现了一种基于B/S架构的化工厂区多路火焰智能视频监控系统,并以Web系统的形式呈现。首先,系统中集成了一种改进的YOLOv5火焰检测算法,该算法用Ghost卷积替换常规卷积以实现网络的轻量化;其次,添加改进的注意力机制模块和小目标检测锚框来增强小目标检测能力;最后,将由光流网络提取的火焰运动信息与原始火焰数据进行融合送入改进的YOLOv5火焰检测算法中,进一步提高对火焰的检测精度。大量的现场测试表明,该系统能够实时识别和定位厂区内火焰,检测帧率可达15 ms/帧,检出率达到100%,具有较高的稳定性,可为化工行业提供一种高效、可靠的火灾监测解决方案。
针对在多效应和非视距情况下定位精度低、稳定性差等问题,基于飞行时间定位算法,结合陈?泰勒(Chan?Taylor,C?T)协同定位算法,再融合无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法,设计了一种室内定位系统——陈?泰勒?无迹卡尔曼滤波(Chan?Taylor? Unscented Kalman Filter,C?T?UKF)组合定位算法。该系统主要由定位基站、定位标签、无线通信系统及上位机等组成;采用Chan算法,对通过飞行时间方法测出的距离进行解算,并将解出的坐标作为Taylor算法的初始值进行了迭代计算;通过UKF算法,对迭代的结果进行了平滑处理。结果表明,该算法定位系统精度高,稳定性强,成本低,在视距与非视距的平均定位误差分别小于0.17 m和0.20 m,能够适用于高精度定位场合。