1 |
GIDLEY J L.Recent advances in hydraulic fracturing[M]. Oak Ridge: Office of Scientific and Technical Information, 1989.
|
2 |
GLORIOSO J C, RATTIA A. Unconventional reservoirs: Basic petrophysical concepts for shale gas[C]//SPE/EAGE European Unconventional Resources Conference and Exhibition. Vienna, Austria: SPE, 2012: SPE⁃153004⁃MS.
|
3 |
WANG Q, CHEN X, JHA A N, et al. Natural gas from shale formation⁃the evolution, evidences and challenges of shale gas revolution in United States[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1⁃28.
|
4 |
蒋成刚. 非常规油气藏水平井多段压裂技术[J]. 化学工程与装备, 2023(8): 136⁃137.
|
|
JIANG C G. Multistage fracturing technology for horizontal wells in unconventional oil and gas reservoirs[J]. Chemical Engineering & Equipment, 2023(8): 136⁃137.
|
5 |
毛峥, 李亭, 刘德华, 等. 水力压裂支撑剂应用现状与研究进展[J]. 应用化工, 2022, 51(2): 525⁃530.
|
|
MAO Z, LI T, LIU D H, et al. Application and research progress of hydraulic fracturing proppant[J]. Applied Chemical Industry, 2022, 51(2): 525⁃530.
|
6 |
隋微波, 温长云, 孙文常, 等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业, 2023, 43(2): 87⁃103.
|
|
SUI W B, WEN C Y, SUN W C, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87⁃103.
|
7 |
GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4): 603⁃622.
|
8 |
DAI Y F, HOU B, ZHOU C L, et al. Interaction law between natural fractures⁃vugs and acid⁃etched fracture during steering acid fracturing in carbonate reservoirs[J]. Geofluids, 2021, 2021(1): 6649874.
|
9 |
GAO Y F,WANG D,CHEN Z P,et al. Numerical simulation of seepage in shale oil reservoirs under hydraulic fracturing: From core⁃scale experiment to reservoir⁃scale modeling[J]. Energies, 2024, 17(22): 5636.
|
10 |
HOU B, DAI Y F, ZHOU C L, et al. Mechanism study on steering acid fracture initiation and propagation under different engineering geological conditions[J]. Geomechanics and Geophysics for Geo⁃Energy and Geo⁃Resources, 2021, 7(3): 73.
|
11 |
戴一凡, 侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析[J]. 断块油气田, 2023, 30(4): 672⁃677.
|
|
DAI Y F, HOU B. Correlation analysis between acid⁃etched fracture surface roughness and fracture conductivity in carbonate reservoir[J]. Fault⁃Block Oil & Gas Field, 2023, 30(4): 672⁃677.
|
12 |
戴一凡, 侯冰, 廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究[J]. 石油钻探技术, 2024, 52(2): 229⁃235.
|
|
DAI Y F, HOU B, LIAO Z H. Simulation of hydraulic fracturing in deep hot dry rock reservoir based on phase⁃field method[J]. Petroleum Drilling Techniques, 2024, 52(2): 229⁃235.
|
13 |
DAI Y F, HOU B, LEE S, et al. A thermal⁃hydraulic⁃mechanical⁃chemical coupling model for acid fracture propagation based on a phase⁃field method[J]. Rock Mechanics and Rock Engineering, 2024, 57(7): 4583⁃4605.
|
14 |
侯冰, 戴一凡, 范濛, 等. 基于相场法的酸压裂缝连通孔洞数值模拟[J]. 石油学报, 2022, 43(6): 849⁃859.
|
|
HOU B, DAI Y F, FAN M, et al. Numerical simulation of pores connection by acid fracturing based on phase⁃field method[J]. Acta Petrolei Sinica, 2022, 43(6): 849⁃859.
|
15 |
郑宏林,马新仿,林海,等. 藻灰岩压裂裂缝扩展规律物理模拟[J]. 石油钻采工艺,2023,45(5):607⁃615.
|
|
ZHENG H L, MA X F, LIN H, et al. Physical simulation of fracture propagation patterns in algal limestone fracturing[J]. Petroleum Drilling Techniques, 2023, 45(5): 607⁃615.
|
16 |
柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45⁃48.
|
|
LIU G H, PANG F, CHEN Z X. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of China University of Petroleum(Edition of Natural Science), 2000, 24(5): 45⁃48.
|
17 |
侯冰, 张其星, 陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术, 2023, 51(5): 66⁃77.
|
|
HOU B, ZHANG Q X, CHEN M. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(5): 66⁃77.
|
18 |
钟萍萍, 陆峰, 游雨奇, 等. 基于示踪剂监测的压裂裂缝体积的拟合方法及应用[J]. 钻采工艺, 2022, 45(4): 109⁃113.
|
|
ZHONG P P, LU F, YOU Y Q, et al. Fitting method of fracture volume calculation based on tracer monitoring and its application[J]. Drilling & Production Technology, 2022, 45(4): 109⁃113.
|
19 |
曹鹏. 多层压裂示踪剂监测解释方法分析[D]. 北京: 中国石油大学(北京), 2020.
|
20 |
李迪. 基于压裂示踪剂返排规律的产能预测研究[D]. 青岛: 中国石油大学(华东), 2021.
|
21 |
邹剑,兰夕堂, 高尚, 等. 示踪剂裂缝监测技术在气藏水平井压裂中的应用[J]. 精细与专用化学品, 2024, 32(2): 20⁃23.
|
|
ZOU J, LAN X T, GAO S, et al. Application of tracer fraction monitoring technology on horizontal well fracturing in gas reservoirs[J]. Fine and Specialty Chemicals, 2024, 32(2): 20⁃23.
|
22 |
张丽, 孙建孟, 孙志强. 数字岩心建模方法应用[J]. 西安石油大学学报(自然科学版), 2012, 27(3): 35⁃40.
|
|
ZHANG L, SUN J M, SUN Z Q. Research in digital core modeling methods[J]. Journal of Xi'an Shiyou University(Natural Science), 2012, 27(3): 35⁃40.
|
23 |
薛仁江. 济阳坳陷页岩油储层裂缝起裂与扩展机理研究[D]. 成都: 西南石油大学, 2018.
|
24 |
黄晓莹. 砂岩的T1和T2核磁共振成像表征研究[D]. 北京: 中国石油大学(北京), 2020.
|
25 |
徐湖山. 基于CT技术的数字岩心重构及其应用研究[D]. 大连: 大连理工大学, 2014.
|
26 |
赵建鹏,崔利凯,陈惠,等.基于CT扫描数字岩心的岩石微观结构定量表征方法[J].现代地质,2020,34(6):1205⁃1213.
|
|
ZHAO J P, CUI L K, CHEN H, et al. Quantitative characterization of rock microstructure of digital core based on CT scanning[J]. Geoscience, 2020, 34(6): 1205⁃1213.
|
27 |
刘文婷, 杨建青, 陆燕燕, 等. 应用于复合材料诊断的声发射检测技术综述[J]. 绝缘材料, 2024, 57(6): 9⁃16.
|
|
LIU W T, YANG J Q, LU Y Y, et al. Review of acoustic emission detection techniques applied to composite material diagnosis[J]. Insulating Materials, 2024, 57(6): 9⁃16.
|
28 |
王婷婷. 基于声发射行为页岩压裂裂缝破裂方式演化研究[D]. 大庆: 东北石油大学, 2017.
|
29 |
HAMPTON J, FRASH L, GUTIERREZ M. Investigation of laboratory hydraulic fracture source mechanisms using acoustic emission[C]//47th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2013: ARMA⁃2013⁃315.
|
30 |
BUNGER A P, KEAR J, DYSKIN A V, et al. Interpreting post⁃injection acoustic emission in laboratory Hydraulic fracturing experiments[C]//The 48th US Rock Mechanics/Geomechanics Symposium Held in Minneapolis. Minneapolis: ARMA, 2014: ARMA⁃2014⁃6973.
|
31 |
STANCHITS S, BURGHARDT J, SURDI A, et al. Acoustic emission monitoring of heterogeneous rock hydraulic fracturing[C]//48th U.S. Rock Mechanics/Geomechanics Symposium. Minneapolis, Minnesota: ARMA, 2014: ARMA⁃2014⁃7775.
|
32 |
MOLENDA M, STOCKHERT F, BRENNE S, et al. Acoustic emission monitoring of laboratory scale hydraulic fracturing experiments[C]//49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2015: ARMA⁃2015⁃069.
|
33 |
GAO Y F,WANG X Y,JIANG H L,et al. Numerically coupled thermo⁃hydro⁃mechanical analyses of ultra⁃heavy oil reservoirs during the micro⁃fracturing stage[J]. Energies, 2022, 15(10): 3677.
|
34 |
高彦芳, 陈勉, 林伯韬,等. 稠油油藏SAGD微压裂阶段储层压缩系数研究——以新疆风城陆相储层重1区齐古组为例[J]. 石油科学通报, 2017, 2(2): 240⁃250.
|
|
GAO Y F,CHEN M,LIN B T,et al.Study on compressibility during micro⁃fracturing in continental ultra⁃heavy oil sand reservoirs:Taking the Qigu formation of Xinjiang Fengcheng oilfield Z1 block for instance[J].Petroleum Science Bulletin,2017, 2(2): 240⁃250.
|
35 |
侯冰, 陈勉, 谭鹏, 等. 页岩气藏缝网压裂物理模拟的声发射监测初探[J]. 中国石油大学学报(自然科学版), 2015, 39(1): 66⁃71.
|
|
HOU B, CHEN M, TAN P, et al. Monitoring of hydraulic fracture network by acoustic emission method in simulated
|
|
tri⁃axial fracturing system of shale gas reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(1): 66⁃71.
|
36 |
HOU B, ZHANG Q, LÜ J. Distributed fiber optic monitoring of asymmetric fracture swarm propagation in laminated continental shale oil reservoirs[J]. Rock Mechanics and Rock Engineering, 2024,54(6):5067⁃5087.
|
37 |
许卫鹏. 分布式光纤拉曼测温系统设计及APD处于盖革模式的研究[D]. 太原: 太原理工大学, 2015.
|
38 |
朱世琰, 李海涛, 张建伟, 等. 分布式光纤测温技术在油田开发中的发展潜力[J]. 油气藏评价与开发, 2015(5): 69⁃75.
|
|
ZHU S Y, LI H T, ZHANG J W, et al. Potential of fiber optic distributed temperature sensing technology for oilfield development[J]. Reservoir Evaluation and Development, 2015(5): 69⁃75.
|
39 |
李海涛, 罗红文, 向雨行, 等. DTS/DAS技术在水平井压裂监测中的应用现状与展望[J]. 新疆石油天然气, 2021, 17(4): 62⁃73.
|
|
LI H T, LUO H W, XIANG Y H, et al. The application status and prospect of DTS/DAS in fracturing monitoring of horizontal wells[J]. Xinjiang Oil & Gas, 2021, 17(4): 62⁃73.
|
40 |
王振宇,林伯韬,艾白布·阿不力米提.DAS与DTS光纤测试技术在水平井中的应用[J].测井技术,2022,46(4):478⁃486.
|
|
WANG Z Y, LIN B T, ABLIMIT A. Application of DAS and DTS optical fiber testing technology in horizontal wells[J]. Well Logging Technology, 2022, 46(4): 478⁃486.
|
41 |
马国旗,曹丹平,尹教建,等.分布式声传感井中地震信号检测数值模拟方法[J].石油地球物理勘探,2020,55(2):311⁃320.
|
|
MA G Q, CAO D P, YIN J J, et al. Numerical simulation of detecting seismic signals in DAS wells[J]. Oil Geophysical Prospecting, 2020, 55(2): 311⁃320.
|
42 |
ELLIOTT J C, DOVER S D. X⁃ray micro⁃tomography[J]. Journal of Microscopy, 1982, 126: 211⁃213.
|
43 |
DUNSMUIR J H, FERGUSON S R, D'AMICO K L, et al. X⁃ray microtomography: A new tool for the characterization of porous media[C]//SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE, 1991: SPE⁃22860⁃MS.
|
44 |
ARNS C H, KNACKSTEDT M A, PINCZEWSKI W V, et al. Virtual permeametry on microtomographic images[J]. Journal of Petroleum Science and Engineering, 2004, 45(1⁃2): 41⁃46.
|
45 |
屈乐, 孙卫, 杜环虹, 等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用——以莫北油田116井区三工河组为例[J]. 现代地质, 2014(1): 190⁃196.
|
|
QU L, SUN W, DU H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application: An example from Sangonghe formation of 116 well field in Mobei oilfield[J]. Geoscience, 2014(1):190⁃196.
|
46 |
JIN C, XU Y, YOU Z P. Automated real aggregate modelling approach in discrete element method based on X⁃ray computed tomography images[J]. International Journal of Pavement Engineering, 2017, 18: 1⁃14.
|
47 |
BAKKE S,ØREN P E. 3⁃D pore⁃scale modelling of sandstones and flow simulations in the pore networks[J]. SPE Journal, 1997, 2(2): 136⁃149.
|
48 |
HIDAJAT I, RASTOGI A, SINGH M, et al. Transport properties of porous media from thin⁃sections[C]//SPE Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina: SPE, 2001: SPE⁃69623⁃MS.
|
49 |
HAZLETT R D. Statistical characterization and stochastic modeling of pore networks in relation to fluid flow[J]. Mathematical Geology, 1997, 29(6): 801⁃822.
|
50 |
罗加荣. 过程法模拟构建数字岩心[J]. 工程地球物理学报, 2021, 18(1): 147⁃152.
|
|
LUO J R. Construction of digital core by process simulation[J]. Chinese Journal of Engineering Geophysics,2021,18(1):147⁃152.
|
51 |
陈国军, 裴利强, 李胜, 等. 基于分层四叉树的多分辨率数字岩心的表示与生成[J]. 计算机与数字工程, 2021, 49(11): 2348⁃2352.
|
|
CHEN G J, PEI L Q, LI S, et al. Representation and generation of multi⁃resolution digital core based on layered quadtree[J]. Computer and Digital Engineering, 2021, 49(11): 2348⁃2352.
|
52 |
郑欣. 毛管压力曲线法与CT扫描数字岩心技术的应用对比分析[J]. 海洋石油, 2023, 43(4): 18⁃23.
|
|
ZHENG X. Comparative analysis of the application of capillary pressure curve method and CT scanning digital core technique[J]. Offshore Oil, 2023, 43(4): 18⁃23.
|
53 |
WU K J, VAN DIJKE M I J, COUPLES G D, et al.3D stochastic modelling of heterogeneous porous media⁃applications to reservoir rocks[J]. Transport in Porous Media, 2006, 65(3): 443⁃467.
|
54 |
刘宁, 方正伟. 基于显微CT成像的数字岩心建模及参数表征[J]. 工业技术创新, 2021, 8(4): 48⁃53.
|
|
LIU N, FANG Z W. Digital core modeling and parameter characterization based on Micro⁃CT imaging[J]. Industrial Technology Innovation, 2021, 8(4): 48⁃53.
|
55 |
高彦芳,任战利,姜海龙,等.考虑剪胀性和应变软化的油砂非线性弹性模型[J].地下空间与工程学报,2023,19(1):43⁃50.
|
|
GAO Y F,REN Z L,JIANG H L,et al.A nonlinear elastic model for oil sands considering shear dilation and strain softening[J].Chinese Journal of Underground Space and Engineering,2023,19(1):43⁃50.
|
56 |
ZOBACK M D, RUMMEL F, JUNG R, et al. Laboratory hydraulic fracturing experiments in intact and pre⁃fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1977, 14(2): 49⁃58.
|
57 |
MAJER E L, DOE T W. Studying hydrofractures by high frequency seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 185⁃199.
|
58 |
焦敬品,何存富,吴斌,等.基于模态分析和小波变换的声发射源定位新算法研究[J].仪器仪表学报,2005,26(5):482⁃485.
|
|
JIAO J P, HE C F, WU B, et al. A new acoustic emission source location technique based on wavelet transform and mode analysis[J]. Chinese Journal of Scientific Instrument, 2005, 26(5): 482⁃485.
|
59 |
赵兴东, 刘建坡, 李元辉, 等. 岩石声发射定位技术及其实验验证[J]. 岩土工程学报, 2008, 30(10): 1472⁃1476.
|
|
ZHAO X D, LIU J P, LI Y H, et al. Experimental verification of rock locating technique with acoustic emission[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1472⁃1476.
|
60 |
周瑶琪, 王爱国, 陈勇, 等. 岩石压裂过程中的声发射信号研究[J]. 中国矿业, 2008, 17(2): 94⁃97.
|
|
ZHOU Y Q, WANG A G, CHEN Y, et al. Research on acoustic emission of rock fracture[J]. China Mining Magazine, 2008, 17(2): 94⁃97.
|
61 |
LAVROV A. Kaiser effect observation in brittle rock cyclically loaded with different loading rates[J]. Mechanics of Materials, 2001, 33(11): 669⁃677.
|
62 |
陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(S1): 868⁃872.
|
|
CHEN M, PANG F, JIN Y. Experiments and analysis on hydraulic fracturing by a large⁃size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 868⁃872.
|
63 |
CASAS L, MISKIMINS J L, BLACK A, et al. Laboratory hydraulic fracturing test on a rock with artificial discontinuities[C]//SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA: SPE, 2006: SPE⁃103617⁃MS.
|
64 |
CHITRALA Y, MORENO C, SONDERGELD C, et al. An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions[J]. Journal of Petroleum Science and Engineering, 2013, 108: 151⁃161.
|
65 |
郭印同, 杨春和, 贾长贵, 等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014(1): 52⁃59.
|
|
GUO Y T, YANG C H, JIA C G, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(1): 52⁃59.
|
66 |
房柳林. 钻孔轴向预制裂缝岩石水力压裂声发射定位特征试验研究[D]. 徐州: 中国矿业大学, 2022.
|
67 |
李德康, 贺正然, 张作冬, 等. 一种改进的声发射模板识别流程及其在大尺度页岩水力压裂主被动观测实验中的应用研究[J]. 地球物理学报, 2023, 66(10): 4386⁃4401.
|
|
LI D K, HE Z R, ZHANG Z D, et al. A new template matching based acoustic emission detection procedure and its application in laboratory hydraulic fracturing experiment[J]. Chinese Journal of Geophysics, 2023, 66(10): 4386⁃4401.
|
68 |
LOU Y, ZHANG G Q, WANG X X. Study on fracture mechanism of hydraulic fracturing in sandstone by acoustic emission parameters[J]. Procedia Engineering, 2017, 191: 291⁃298.
|
69 |
SHI X, HAN L, HAN Q R, et al. Experimental near⁃wellbore hydraulic fracture initiation and growth for horizontal wells with in⁃plane perforations[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104224.
|
70 |
SHI X, GE A A, ZHANG Y M, et al. Experimental study on hydraulic fracture propagation behavior on dolomite rocks with open⁃hole completion[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110840.
|
71 |
王维德. 煤体水力压裂声发射监测及失稳破裂特征实验研究[D]. 淮南: 安徽理工大学, 2016.
|
72 |
吴珊. 岩石破裂声发射监测与压裂缝网形成机理研究[D]. 北京: 中国石油大学(北京), 2020.
|
73 |
左乾坤. 致密储层裂缝拓展过程的微地震监测方法研究[D]. 北京: 中国石油大学(北京), 2018.
|
74 |
王丕彤. 基于时差法的声发射源定位技术研究[D]. 沈阳: 沈阳工业大学, 2023.
|
75 |
孙琪真, 范存政, 李豪, 等. 光纤分布式声波传感技术在石油行业的研究进展[J]. 石油物探, 2022, 61(1): 50⁃59.
|
|
SUN Q Z, FAN C Z, LI H, et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 50⁃59.
|
76 |
JIN J, ZHANG H S, LIU J X, et al. Distributed temperature sensing based on rayleigh scattering in irradiated optical fiber[J]. IEEE Sensors Journal, 2016, 16(24): 8928⁃8935.
|
77 |
徐英莉, 陈清. 光纤测温系统在油井监测中的广泛应用[C]//中国石油和化工自动化第十一届年会. 黄山: 中国仪器仪表学会, 2012: 498⁃501.
|
78 |
孔冰,刘爱明,许晓英, 等. 基于光纤测温的毛细管井下温压一体化监测技术[J]. 仪表技术与传感器, 2019(7): 101⁃105.
|
|
KONG B, LIU A M, XU X Y, et al. Downhole temperature and pressure integrated monitoring technology with optical fiber temperature sensor in capillary tube[J]. Instrument Technique and Sensor, 2019(7): 101⁃105.
|
79 |
邹剑, 万芬, 王秋霞, 等. 光纤DTS监测在海上油田热采井中的应用[J]. 石油钻采工艺, 2020, 42(2): 247⁃252.
|
|
ZOU J, WAN F, WANG Q X, et al. Application of DTS monitoring technique in the thermal production wells of offshore oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 247⁃252.
|
80 |
刘为明, 李海涛, 王永清, 等. 基于DTS测试的气藏水平井温度分布特征实验[J]. 断块油气田, 2020, 27(2): 228⁃229.
|
|
LIU W M, LI H T, WANG Y Q, et al. Experimental study on temperature distribution characteristics of horizontal wells in gas reservoir based on DTS test[J]. Fault⁃Block Oil and Gas Field, 2020, 27(2): 228⁃229.
|
81 |
MOLRNAAR M M, HILL D J, WEBSTER P, et al. First downhole application of distributed acoustic sensing for hydraulic⁃fracturing monitoring and diagnostics[J]. SPE Drilling & Completion, 2012, 27(1): 32⁃38.
|
82 |
WEBSTER P, WALL J C, PERJINS C, et al. Micro⁃seismic detection using distributed acoustic sensing[C]//SEG Technical Program Expanded Abstracts 2013. Tulsa: Society of Exploration Geophysicists, 2013: 2459⁃2463.
|
83 |
COX B E, LEHNER R, WEBSTER P, et al. Keynote presentation⁃microseismic data integration: How connecting the dots can help solve the unconventionals puzzle[C]//Fifth EAGE Passive Seismic Workshop. Houten: European Association of Geoscientists & Engineers, 2014: 1⁃3.
|
84 |
周明秀, 管英柱, 张国威,等.分布式光纤监测技术在水平井分段压裂中的应用[J]. 能源与环保, 2024, 46(2): 146⁃154.
|
|
ZHOU M X, GUAN Y Z, ZHANG G W, et al. Application of distributed fiber optic monitoring technology in segmented fracturing of horizontal wells[J]. China Energy and Environmental Protection, 2024, 46(2): 146⁃154.
|
85 |
隋微波,刘荣全,崔凯.水力压裂分布式光纤声波传感监测的应用与研究进展[J].中国科学(技术科学),2021,51(4): 371⁃387.
|
|
SUI W B, LIU R Q, CUI K. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. SCIENTIA SINICA Technologica, 2021, 51(4): 371⁃387.
|
86 |
ZHANG Q X, HOU B, CHANG Z, et al. Experimental study on true triaxial hydraulic fracturing based on distributed fibre⁃optical monitoring[C]//International Geomechanics Symposium. Abu Dhabi, UAE:ARMA,2022: ARMA⁃IGS⁃2022⁃209.
|